Welcome to the Automated Forcefield Optimization Extensions’ documentation!¶
Contents:
Automated Forcefield Optimization Extension¶
Auto-FOX is a library for analyzing potential energy surfaces (PESs) and using the resulting PES descriptors for constructing forcefield parameters. Further details are provided in the documentation.
Currently implemented¶
This package is a work in progress; the following functionalities are currently implemented:
The MultiMolecule class, a class designed for handling and processing potential energy surfaces. (1)
A multi-XYZ reader. (2)
A radial and angular distribution generator (RDF & ADF). (3)
A root mean squared displacement generator (RMSD). (4)
A root mean squared fluctuation generator (RMSF). (5)
Tools for describing shell structures in, e.g., nanocrystals or dissolved solutes. (6)
A Monte Carlo forcefield parameter optimizer. (7)
Using Auto-FOX¶
An input file with some basic examples is provided in the FOX.examples directory.
An example MD trajectory of a CdSe quantum dot is included in the FOX.data directory.
The absolute path + filename of aforementioned trajectory can be retrieved as following:
>>> from FOX import example_xyz
Further examples and more detailed descriptions are available in the documentation.
Installation¶
Anaconda environments¶
While not a strictly required, it stronly recomended to use the virtual environments of Anaconda.
Anaconda comes with a built-in installer; more detailed installation instructions are available for a wide range of OSs.
See the Anaconda documentation.
Anaconda environments can be created, enabled and disabled by, respectively, typing:
Create environment:
conda create -n FOX -c conda-forge python pip
Enable environment:
conda activate FOX
Disable environment:
conda deactivate
Installing Auto-FOX¶
If using Conda, enable the environment:
conda activate FOX
Install Auto-FOX with PyPi:
pip install auto-FOX --upgrade
Congratulations, Auto-FOX is now installed and ready for use!
Optional dependencies¶
The plotting of data produced by Auto-FOX requires Matplotlib. Matplotlib is distributed by both PyPi and Anaconda:
Anaconda:
conda install --name FOX -y -c conda-forge matplotlib
PyPi:
pip install matplotlib
Construction of the angular distribution function in parallel requires DASK.
Anaconda:
conda install -name FOX -y -c conda-forge dask
RDKit is required for a number of .psf-related recipes.
Anaconda:
conda install -name FOX -y -c conda-forge rdkit
PyPi:
pip install rdkit
Auto-FOX Documentation¶
Radial & Angular Distribution Function¶
Radial and angular distribution function (RDF & ADF) generators have been
implemented in the FOX.MultiMolecule
class.
The radial distribution function, or pair correlation function, describes how
the particale density in a system varies as a function of distance from a
reference particle. The herein implemented function is designed for
constructing RDFs between all possible (user-defined) atom-pairs.
Given a trajectory, mol
, stored as a FOX.MultiMolecule
instance, the RDF
can be calculated with the following
command: rdf = mol.init_rdf(atom_subset=None, low_mem=False)
.
The resulting rdf
is a Pandas dataframe, an object which is effectively a
hybrid between a dictionary and a NumPy array.
A slower, but more memory efficient, method of RDF construction can be enabled
with low_mem=True
, causing the script to only store the distance matrix
of a single molecule in memory at once. If low_mem=False
, all distance
matrices are stored in memory simultaneously, speeding up the calculation
but also introducing an additional linear scaling of memory with respect to
the number of molecules.
Note: Due to larger size of angle matrices it is recommended to use
low_mem=False
when generating ADFs.
Below is an example RDF and ADF of a CdSe quantum dot pacified with formate ligands. The RDF is printed for all possible combinations of cadmium, selenium and oxygen (Cd_Cd, Cd_Se, Cd_O, Se_Se, Se_O and O_O).
>>> from FOX import MultiMolecule, example_xyz
>>> mol = MultiMolecule.from_xyz(example_xyz)
# Default weight: np.exp(-r)
>>> rdf = mol.init_rdf(atom_subset=('Cd', 'Se', 'O'))
>>> adf = mol.init_adf(r_max=8, weight=None, atom_subset=('Cd',))
>>> adf_weighted = mol.init_adf(r_max=8, atom_subset=('Cd',))
>>> rdf.plot(title='RDF')
>>> adf.plot(title='ADF')
>>> adf_weighted.plot(title='Distance-weighted ADF')



One can take into account a systems periodicity by settings the molecules’
lattice
vectors and specifying the axes along which
the system is periodic.
The lattice vectors can be provided in one of two formats:
A \((3, 3)\) matrix.
A \((N_{mol}, 3, 3)\)-shaped tensor if they vary across the trajectory.
>>> from FOX import MultiMolecule
>>> import numpy as np
>>> lattice = np.array(...)
>>> mol = MultiMolecule.from_xyz(...)
>>> mol.lattice = lattice
# Periodic along the x, y and/or z axes
>>> rdf = mol.init_rdf(atom_subset=('Cd', 'Se', 'O'), periodic="xy")
>>> adf = mol.init_adf(r_max=8, atom_subset=('Cd',), periodic="xyz")
API¶
- MultiMolecule.init_rdf(mol_subset=None, atom_subset=None, *, dr=0.05, r_max=12.0, periodic=None, atom_pairs=None)[source]
Initialize the calculation of radial distribution functions (RDFs).
RDFs are calculated for all possible atom-pairs in atom_subset and returned as a dataframe.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.dr (
float
) – The integration step-size in Ångström, i.e. the distance between concentric spheres.r_max (
float
) – The maximum to be evaluated interatomic distance in Ångström.periodic (
str
, optional) – If specified, correct for the systems periodicity ifself.lattice is not None
. Accepts"x"
,"y"
and/or"z"
.atom_pairs (
Iterable[tuple[str, str]]
) – An explicit list of atom-pairs for the to-be calculated distances. Note that atom_pairs and atom_subset are mutually exclusive.
- Returns:
A dataframe of radial distribution functions, averaged over all conformations in xyz_array. Keys are of the form: at_symbol1 + ‘ ‘ + at_symbol2 (e.g.
"Cd Cd"
). Radii are used as index.- Return type:
- MultiMolecule.init_adf(mol_subset=None, atom_subset=None, *, r_max=8.0, weight=<function neg_exp>, periodic=None, atom_pairs=None)[source]
Initialize the calculation of distance-weighted angular distribution functions (ADFs).
ADFs are calculated for all possible atom-pairs in atom_subset and returned as a dataframe.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.r_max (
float
) – The maximum inter-atomic distance (in Angstrom) for which angles are constructed. The distance cuttoff can be disabled by settings this value tonp.inf
,"np.inf"
or"inf"
.weight (
Callable[[np.ndarray], np.ndarray]
, optional) – A callable for creating a weighting factor from inter-atomic distances. The callable should take an array as input and return an array. Given an angle \(\phi_{ijk}\), to the distance \(r_{ijk}\) is defined as \(max[r_{ij}, r_{jk}]\). Set toNone
to disable distance weighting.periodic (
str
, optional) – If specified, correct for the systems periodicity ifself.lattice is not None
. Accepts"x"
,"y"
and/or"z"
.atom_pairs (
Iterable[tuple[str, str, str]]
) – An explicit list of atom-triples for the to-be calculated angles. Note that atom_pairs and atom_subset are mutually exclusive.
- Returns:
A dataframe of angular distribution functions, averaged over all conformations in this instance.
- Return type:
Note
Disabling the distance cuttoff is strongly recommended (i.e. it is faster) for large values of r_max. As a rough guideline,
r_max="inf"
is roughly as fast asr_max=15.0
(though this is, of course, system dependant).Note
The ADF construction will be conducted in parralel if the DASK package is installed. DASK can be installed, via anaconda, with the following command:
conda install -n FOX -y -c conda-forge dask
.
- FOX.recipes.time_resolved_rdf(mol, start=0, stop=None, step=500, **kwargs)[source]
Calculate the time-resolved radial distribution function (RDF).
Examples
>>> from FOX import MultiMolecule, example_xyz >>> from FOX.recipes import time_resolved_rdf # Calculate each RDF over the course of 500 frames >>> time_step = 500 >>> mol = MultiMolecule.from_xyz(example_xyz) >>> rdf_list = time_resolved_rdf( ... mol, step=time_step, atom_subset=['Cd', 'Se'] ... )
- Parameters:
mol (
MultiMolecule
) – The trajectory in question.start (
int
) – The initial frame.stop (
int
, optional) – The final frame. Set toNone
to iterate over all frames.step (
int
) – The number of frames per individual RDF. Note that lower step values will result in increased numerical noise.**kwargs (
Any
) – Further keyword arguments forinit_rdf()
.
- Returns:
A list of dataframes, each containing an RDF calculated over the course of step frames.
- Return type:
See also
init_rdf()
Calculate the radial distribution function.
- FOX.recipes.time_resolved_rdf(mol, start=0, stop=None, step=500, **kwargs)[source]
Calculate the time-resolved radial distribution function (RDF).
Examples
>>> from FOX import MultiMolecule, example_xyz >>> from FOX.recipes import time_resolved_rdf # Calculate each RDF over the course of 500 frames >>> time_step = 500 >>> mol = MultiMolecule.from_xyz(example_xyz) >>> rdf_list = time_resolved_rdf( ... mol, step=time_step, atom_subset=['Cd', 'Se'] ... )
- Parameters:
mol (
MultiMolecule
) – The trajectory in question.start (
int
) – The initial frame.stop (
int
, optional) – The final frame. Set toNone
to iterate over all frames.step (
int
) – The number of frames per individual RDF. Note that lower step values will result in increased numerical noise.**kwargs (
Any
) – Further keyword arguments forinit_rdf()
.
- Returns:
A list of dataframes, each containing an RDF calculated over the course of step frames.
- Return type:
See also
init_rdf()
Calculate the radial distribution function.
Root Mean Squared Displacement & Fluctuation¶
Root Mean Squared Displacement¶
The root mean squared displacement (RMSD) represents the average displacement of a set or subset of atoms as a function of time or, equivalently, moleculair indices in a MD trajectory.
Given a trajectory, mol
, stored as a FOX.MultiMolecule
instance,
the RMSD can be calculated with the FOX.MultiMolecule.init_rmsd()
method using the following command:
>>> rmsd = mol.init_rmsd(atom_subset=None)
The resulting rmsd
is a Pandas dataframe, an object which is effectively a
hybrid between a dictionary and a NumPy array.
Below is an example RMSD of a CdSe quantum dot pacified with formate ligands. The RMSD is printed for cadmium, selenium and oxygen atoms.
>>> from FOX import MultiMolecule, example_xyz
>>> mol = MultiMolecule.from_xyz(example_xyz)
>>> rmsd = mol.init_rmsd(atom_subset=('Cd', 'Se', 'O'))
>>> rmsd.plot(title='RMSD')

Root Mean Squared Fluctuation¶
The root mean squared fluctuation (RMSD) represents the time-averaged displacement, with respect to the time-averaged position, as a function of atomic indices.
Given a trajectory, mol
, stored as a FOX.MultiMolecule
instance,
the RMSF can be calculated with the FOX.MultiMolecule.init_rmsf()
method using the following command:
>>> rmsd = mol.init_rmsf(atom_subset=None)
The resulting rmsf
is a Pandas dataframe, an object which is effectively a
hybrid between a dictionary and a Numpy array.
Below is an example RMSF of a CdSe quantum dot pacified with formate ligands. The RMSF is printed for cadmium, selenium and oxygen atoms.
>>> from FOX import MultiMolecule, example_xyz
>>> mol = MultiMolecule.from_xyz(example_xyz)
>>> rmsd = mol.init_rmsf(atom_subset=('Cd', 'Se', 'O'))
>>> rmsd.plot(title='RMSF')

The atom_subset argument¶
In the above two examples atom_subset=None
was used an optional keyword,
one which allows one to customize for which atoms the RMSD & RMSF should be
calculated and how the results are distributed over the various columns.
There are a total of four different approaches to the atom_subset
argument:
1. atom_subset=None
: Examine all atoms and store the results in a single column.
2. atom_subset=int
: Examine a single atom, based on its index, and store the results in a single column.
3. atom_subset=str
or atom_subset=list(int)
: Examine multiple atoms, based on their atom type or indices, and store the results in a single column.
4. atom_subset=tuple(str)
or atom_subset=tuple(list(int))
: Examine multiple atoms, based on their atom types or indices, and store the results in multiple columns. A column is created for each string or nested list in atoms
.
It should be noted that lists and/or tuples can be interchanged for any other iterable container (e.g. a Numpy array), as long as the iterables elements can be accessed by their index.
API¶
- MultiMolecule.init_rmsd(mol_subset=None, atom_subset=None, reset_origin=True)[source]
Initialize the RMSD calculation, returning a dataframe.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.reset_origin (
bool
) – Reset the origin of each molecule in this instance by means of a partial Procrustes superimposition, translating and rotating the molecules.
- Returns:
A dataframe of RMSDs with one column for every string or list of ints in atom_subset. Keys consist of atomic symbols (e.g.
"Cd"
) if atom_subset contains strings, otherwise a more generic ‘series ‘ + str(int) scheme is adopted (e.g."series 2"
). Molecular indices are used as index.- Return type:
- MultiMolecule.init_rmsf(mol_subset=None, atom_subset=None, reset_origin=True)[source]
Initialize the RMSF calculation, returning a dataframe.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.reset_origin (
bool
) – Reset the origin of each molecule in this instance by means of a partial Procrustes superimposition, translating and rotating the molecules.
- Returns:
A dataframe of RMSFs with one column for every string or list of ints in atom_subset. Keys consist of atomic symbols (e.g.
"Cd"
) if atom_subset contains strings, otherwise a more generic ‘series ‘ + str(int) scheme is adopted (e.g."series 2"
). Molecular indices are used as indices.- Return type:
- MultiMolecule.init_shell_search(mol_subset=None, atom_subset=None, rdf_cutoff=0.5)[source]
Calculate and return properties which can help determining shell structures.
Warning
Depercated.
- static MultiMolecule.get_at_idx(rmsf, idx_series, dist_dict)[source]
Create subsets of atomic indices.
Warning
Depercated.
The MultiMolecule Class¶
The API of the FOX.MultiMolecule
class.
API FOX.MultiMolecule¶
- class FOX.MultiMolecule(coords, atoms=None, bonds=None, properties=None, atoms_alias=None, lattice=None)[source]¶
A class designed for handling a and manipulating large numbers of molecules.
More specifically, different conformations of a single molecule as derived from, for example, an intrinsic reaction coordinate calculation (IRC) or a molecular dymanics trajectory (MD). The class has access to four attributes (further details are provided under parameters):
- Parameters:
coords (
np.ndarray[np.float64]
, shape \((m, n, 3)\)) – A 3D array with the cartesian coordinates of \(m\) molecules with \(n\) atoms.atoms (
dict[str, list[str]]
) – A dictionary with atomic symbols as keys and matching atomic indices as values. Stored in theMultiMolecule.atoms
attribute.bonds (
np.ndarray[np.int64]
, shape \((k, 3)\)) – A 2D array with indices of the atoms defining all \(k\) bonds (columns 1 & 2) and their respective bond orders multiplied by 10 (column 3). Stored in theMultiMolecule.bonds
attribute.properties (
plams.Settings
) – A Settings instance for storing miscellaneous user-defined (meta-)data. Is devoid of keys by default. Stored in theMultiMolecule.properties
attribute.lattice (
np.ndarray[np.float64]
, shape \((m, 3, 3)\) or \((3, 3)\), optional) – Lattice vectors for periodic systems. For non-periodic systems this value should beNone
.
- atoms¶
A dictionary with atomic symbols as keys and matching atomic indices as values.
- Type:
- bonds¶
A 2D array with indices of the atoms defining all \(k\) bonds (columns 1 & 2) and their respective bond orders multiplied by 10 (column 3).
- Type:
np.ndarray[np.int64]
, shape \((k, 3)\)
- properties¶
A Settings instance for storing miscellaneous user-defined (meta-)data. Is devoid of keys by default.
- Type:
- lattice¶
Lattice vectors for periodic systems. For non-periodic systems this value should be
None
.- Type:
np.ndarray[np.float64]
, shape \((m, 3, 3)\) or \((3, 3)\), optional
- round(decimals=0, *, inplace=False)[source]¶
Round the Cartesian coordinates of this instance to a given number of decimals.
- delete_atoms(atom_subset)[source]¶
Create a copy of this instance with all atoms in atom_subset removed.
- Parameters:
atom_subset (
Sequence[str]
) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.- Returns:
A new molecule with all atoms in atom_subset removed.
- Return type:
- Raises:
- get_supercell(supercell_size)[source]¶
Construct a new supercell by duplicating the molecule.
- Parameters:
supercell_size (
tuple[int, int, int]
) – The number of new unit cells along each of the three Cartesian axes.- Returns:
The new supercell constructed from self.
- Return type:
- concatenate(other, lattice=None, axis=1)[source]¶
Concatenate one or more molecules along the user-specified axis.
- Parameters:
other (
Iterable[FOX.MultiMolecule]
) – The to-be concatenated molecules.lattice (
np.ndarray
, optional) – The lattice of the new molecule.
- Returns:
The newly concatenated molecule.
- Return type:
- add_atoms(coords, symbols='Xx')[source]¶
Create a copy of this instance with all atoms in atom_subset appended.
Examples
>>> import numpy as np >>> from FOX import MultiMolecule, example_xyz >>> mol = MultiMolecule.from_xyz(example_xyz) >>> coords: np.ndarray = np.random.rand(73, 3) # Add 73 new atoms with random coords >>> symbols = 'Br' >>> mol_new: MultiMolecule = mol.add_atoms(coords, symbols) >>> print(repr(mol)) MultiMolecule(..., shape=(4905, 227, 3), dtype='float64') >>> print(repr(mol_new)) MultiMolecule(..., shape=(4905, 300, 3), dtype='float64')
- Parameters:
coords (array-like) – A \((3,)\), \((n, 3)\), \((m, 3)\) or \((m, n, 3)\) array-like object with
m == len(self)
. Represents the Cartesian coordinates of the to-be added atoms.symbols (
str
orIterable[str]
) – One or more atomic symbols of the to-be added atoms.
- Returns:
A new molecule with all atoms in atom_subset appended.
- Return type:
- guess_bonds(atom_subset=None)[source]¶
Guess bonds within the molecules based on atom type and inter-atomic distances.
Bonds are guessed based on the first molecule in this instance Performs an inplace modification of self.bonds
- Parameters:
atom_subset (
Sequence[str]
, optional) – A tuple of atomic symbols. Bonds are guessed between all atoms whose atomic symbol is in atom_subset. IfNone
, guess bonds for all atoms in this instance.
- random_slice(start=0, stop=None, p=0.5, inplace=False)[source]¶
Construct a new
MultiMolecule
instance by randomly slicing this instance.The probability of including a particular element is equivalent to p.
- Parameters:
start (
int
) – Start of the interval.stop (
int
, optional) – End of the interval.p (
float
) – The probability of including each particular molecule in this instance. Values must be between0
(0%) and1
(100%).inplace (
bool
) – Instead of returning the new coordinates, perform an inplace update of this instance.
- Returns:
If inplace is
True
, return a new molecule.- Return type:
- Raises:
ValueError – Raised if p is smaller than
0.0
or larger than1.0
.
- reset_origin(mol_subset=None, atom_subset=None, inplace=True, rot_ref=None)[source]¶
Reallign all molecules in this instance.
All molecules in this instance are rotating and translating, by performing a partial partial Procrustes superimposition with respect to the first molecule in this instance.
The superimposition is carried out with respect to the first molecule in this instance.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.inplace (
bool
) – Instead of returning the new coordinates, perform an inplace update of this instance.
- Returns:
If inplace is
True
, return a newMultiMolecule
instance.- Return type:
- sort(sort_by='symbol', reverse=False, inplace=True)[source]¶
Sort the atoms in this instance and self.atoms, performing in inplace update.
- Parameters:
sort_by (
str
orSequence[int]
) – The property which is to be used for sorting. Accepted values:"symbol"
(i.e. alphabetical),"atnum"
,"mass"
,"radius"
or"connectors"
. See the plams.PeriodicTable module for more details. Alternatively, a user-specified sequence of indices can be provided for sorting.reverse (
bool
) – Sort in reversed order.inplace (
bool
) – Instead of returning the new coordinates, perform an inplace update of this instance.
- Returns:
If inplace is
True
, return a newMultiMolecule
instance.- Return type:
- residue_argsort(concatenate=True)[source]¶
Return the indices that would sort this instance by residue number.
Residues are defined based on moleculair fragments based on self.bonds.
- Parameters:
concatenate (
bool
) – IfFalse
, returned a nested list with atomic indices. Each sublist contains the indices of a single residue.- Returns:
A 1D array of indices that would sort \(n\) atoms this instance.
- Return type:
np.ndarray[np.int64]
, shape \((n,)\)
- get_center_of_mass(mol_subset=None, atom_subset=None)[source]¶
Get the center of mass.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.
- Returns:
A 2D array with the centres of mass of \(m\) molecules with \(n\) atoms.
- Return type:
np.ndarray[np.float64]
, shape \((m, 3)\)
- get_bonds_per_atom(atom_subset=None)[source]¶
Get the number of bonds per atom in this instance.
- Parameters:
atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.- Returns:
A 1D array with the number of bonds per atom, for all \(n\) atoms in this instance.
- Return type:
\(n\) np.ndarray [np.int64]
- init_average_velocity(timestep=1.0, rms=False, mol_subset=None, atom_subset=None)[source]¶
Calculate the average atomic velocty.
The average velocity (in fs/A) is calculated for all atoms in atom_subset over the course of a trajectory.
The velocity is averaged over all atoms in a particular atom subset.
- Parameters:
timestep (
float
) – The stepsize, in femtoseconds, between subsequent frames.rms (
bool
) – Calculate the root-mean squared average velocity instead.mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.
- Returns:
A dataframe holding \(m-1\) velocities averaged over one or more atom subsets.
- Return type:
- init_time_averaged_velocity(timestep=1.0, rms=False, mol_subset=None, atom_subset=None)[source]¶
Calculate the time-averaged velocty.
The time-averaged velocity (in fs/A) is calculated for all atoms in atom_subset over the course of a trajectory.
- Parameters:
timestep (
float
) – The stepsize, in femtoseconds, between subsequent frames.rms (
bool
) – Calculate the root-mean squared time-averaged velocity instead.mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.
- Returns:
A dataframe holding \(m-1\) time-averaged velocities.
- Return type:
- init_rmsd(mol_subset=None, atom_subset=None, reset_origin=True)[source]¶
Initialize the RMSD calculation, returning a dataframe.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.reset_origin (
bool
) – Reset the origin of each molecule in this instance by means of a partial Procrustes superimposition, translating and rotating the molecules.
- Returns:
A dataframe of RMSDs with one column for every string or list of ints in atom_subset. Keys consist of atomic symbols (e.g.
"Cd"
) if atom_subset contains strings, otherwise a more generic ‘series ‘ + str(int) scheme is adopted (e.g."series 2"
). Molecular indices are used as index.- Return type:
- init_rmsf(mol_subset=None, atom_subset=None, reset_origin=True)[source]¶
Initialize the RMSF calculation, returning a dataframe.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.reset_origin (
bool
) – Reset the origin of each molecule in this instance by means of a partial Procrustes superimposition, translating and rotating the molecules.
- Returns:
A dataframe of RMSFs with one column for every string or list of ints in atom_subset. Keys consist of atomic symbols (e.g.
"Cd"
) if atom_subset contains strings, otherwise a more generic ‘series ‘ + str(int) scheme is adopted (e.g."series 2"
). Molecular indices are used as indices.- Return type:
- get_average_velocity(timestep=1.0, rms=False, mol_subset=None, atom_subset=None)[source]¶
Return the mean or root-mean squared velocity.
- Parameters:
timestep (
float
) – The stepsize, in femtoseconds, between subsequent frames.rms (
bool
) – Calculate the root-mean squared average velocity instead.mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.
- Returns:
A 1D array holding \(m-1\) velocities averaged over one or more atom subsets.
- Return type:
np.ndarray[np.float64]
, shape \((m-1,)\)
- get_time_averaged_velocity(timestep=1.0, rms=False, mol_subset=None, atom_subset=None)[source]¶
Return the mean or root-mean squared velocity (mean = time-averaged).
- Parameters:
timestep (
float
) – The stepsize, in femtoseconds, between subsequent frames.rms (
bool
) – Calculate the root-mean squared average velocity instead.mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.
- Returns:
A 1D array holding \(n\) time-averaged velocities.
- Return type:
np.ndarray[np.float64]
, shape \((n,)\)
- get_velocity(timestep=1.0, norm=True, mol_subset=None, atom_subset=None)[source]¶
Return the atomic velocties.
The velocity (in fs/A) is calculated for all atoms in atom_subset over the course of a trajectory.
- Parameters:
timestep (
float
) – The stepsize, in femtoseconds, between subsequent frames.norm (
bool
) – IfTrue
return the norm of the \(x\), \(y\) and \(z\) velocity components.mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.
- Returns:
A 2D or 3D array of atomic velocities, the number of dimensions depending on the value of norm (
True
= 2D;False
= 3D).- Return type:
np.ndarray[np.float64]
, shape \((m, n)\) or \((m, n, 3)\)
- get_rmsd(mol_subset=None, atom_subset=None)[source]¶
Calculate the root mean square displacement (RMSD).
The RMSD is calculated with respect to the first molecule in this instance.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.
- Returns:
A dataframe with the RMSD as a function of the XYZ frame numbers.
- Return type:
- get_rmsf(mol_subset=None, atom_subset=None)[source]¶
Calculate the root mean square fluctuation (RMSF).
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.
- Returns:
A dataframe with the RMSF as a function of atomic indices.
- Return type:
- init_shell_search(mol_subset=None, atom_subset=None, rdf_cutoff=0.5)[source]¶
Calculate and return properties which can help determining shell structures.
Warning
Depercated.
- static get_at_idx(rmsf, idx_series, dist_dict)[source]¶
Create subsets of atomic indices.
Warning
Depercated.
- init_rdf(mol_subset=None, atom_subset=None, *, dr=0.05, r_max=12.0, periodic=None, atom_pairs=None)[source]¶
Initialize the calculation of radial distribution functions (RDFs).
RDFs are calculated for all possible atom-pairs in atom_subset and returned as a dataframe.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.dr (
float
) – The integration step-size in Ångström, i.e. the distance between concentric spheres.r_max (
float
) – The maximum to be evaluated interatomic distance in Ångström.periodic (
str
, optional) – If specified, correct for the systems periodicity ifself.lattice is not None
. Accepts"x"
,"y"
and/or"z"
.atom_pairs (
Iterable[tuple[str, str]]
) – An explicit list of atom-pairs for the to-be calculated distances. Note that atom_pairs and atom_subset are mutually exclusive.
- Returns:
A dataframe of radial distribution functions, averaged over all conformations in xyz_array. Keys are of the form: at_symbol1 + ‘ ‘ + at_symbol2 (e.g.
"Cd Cd"
). Radii are used as index.- Return type:
- init_debye_scattering(half_angle, wavelength, mol_subset=None, atom_subset=None, *, periodic=None, atom_pairs=None)[source]¶
Initialize the calculation of Debye scattering factors.
Scatering factors are calculated for all possible atom-pairs in atom_subset and returned as a dataframe.
- Parameters:
half_angle (
float
ornp.ndarray
) – One or more half angles. Units should be in radian.wavelength (
float
) – One or wavelengths. Units should be in nanometer.mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.periodic (
str
, optional) – If specified, correct for the systems periodicity ifself.lattice is not None
. Accepts"x"
,"y"
and/or"z"
.atom_pairs (
Iterable[tuple[str, str]]
) – An explicit list of atom-pairs for the to-be calculated distances. Note that atom_pairs and atom_subset are mutually exclusive.
- Returns:
A dataframe of with the Debye scattering, averaged over all conformations. Keys are of the form: at_symbol1 + ‘ ‘ + at_symbol2 (e.g.
"Cd Cd"
).- Return type:
- get_dist_mat(mol_subset=None, atom_subset=(None, None), lattice=None, periodicity=range(0, 3))[source]¶
Create and return a distance matrix for all molecules and atoms in this instance.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.lattice (
np.ndarray[np.float64]
, shape \((3, 3)\) or \((m, 3, 3)\), optional) – If notNone
, use the specified lattice vectors for correcting periodic effects.periodicty (
str
) – The axes along which the system’s periodicity extends; accepts"x"
,"y"
and/or"z"
. Only relevant iflattice is not None
.
- Returns:
A 3D distance matrix of \(m\) molecules, created out of two sets of \(n\) and \(k\) atoms.
- Return type:
np.ndarray[np.float64]
, shape \((m, n, k)\)
- get_pair_dict(atom_subset, r=2)[source]¶
Take a subset of atoms and return a dictionary.
- Parameters:
atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.r (
int
) – The length of the to-be returned subsets.
- init_power_spectrum(mol_subset=None, atom_subset=None, freq_max=4000, timestep=1)[source]¶
Calculate and return the power spectrum associated with this instance.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.freq_max (
int
) – The maximum to be returned wavenumber (cm**-1).timestep (
float
) – The stepsize, in femtoseconds, between subsequent frames.
- Returns:
A DataFrame containing the power spectrum for each set of atoms in atom_subset.
- Return type:
- get_vacf(mol_subset=None, atom_subset=None, timestep=1)[source]¶
Calculate and return the velocity autocorrelation function (VACF).
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.timestep (
float
) – The stepsize, in femtoseconds, between subsequent frames.
- Returns:
A DataFrame containing the power spectrum for each set of atoms in atom_subset.
- Return type:
- init_adf(mol_subset=None, atom_subset=None, *, r_max=8.0, weight=<function neg_exp>, periodic=None, atom_pairs=None)[source]¶
Initialize the calculation of distance-weighted angular distribution functions (ADFs).
ADFs are calculated for all possible atom-pairs in atom_subset and returned as a dataframe.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.r_max (
float
) – The maximum inter-atomic distance (in Angstrom) for which angles are constructed. The distance cuttoff can be disabled by settings this value tonp.inf
,"np.inf"
or"inf"
.weight (
Callable[[np.ndarray], np.ndarray]
, optional) – A callable for creating a weighting factor from inter-atomic distances. The callable should take an array as input and return an array. Given an angle \(\phi_{ijk}\), to the distance \(r_{ijk}\) is defined as \(max[r_{ij}, r_{jk}]\). Set toNone
to disable distance weighting.periodic (
str
, optional) – If specified, correct for the systems periodicity ifself.lattice is not None
. Accepts"x"
,"y"
and/or"z"
.atom_pairs (
Iterable[tuple[str, str, str]]
) – An explicit list of atom-triples for the to-be calculated angles. Note that atom_pairs and atom_subset are mutually exclusive.
- Returns:
A dataframe of angular distribution functions, averaged over all conformations in this instance.
- Return type:
Note
Disabling the distance cuttoff is strongly recommended (i.e. it is faster) for large values of r_max. As a rough guideline,
r_max="inf"
is roughly as fast asr_max=15.0
(though this is, of course, system dependant).Note
The ADF construction will be conducted in parralel if the DASK package is installed. DASK can be installed, via anaconda, with the following command:
conda install -n FOX -y -c conda-forge dask
.
- T¶
View of the transposed array.
Same as
self.transpose()
.Examples
>>> a = np.array([[1, 2], [3, 4]]) >>> a array([[1, 2], [3, 4]]) >>> a.T array([[1, 3], [2, 4]])
>>> a = np.array([1, 2, 3, 4]) >>> a array([1, 2, 3, 4]) >>> a.T array([1, 2, 3, 4])
See also
- all(axis=None, out=None, keepdims=False, *, where=True)¶
Returns True if all elements evaluate to True.
Refer to numpy.all for full documentation.
See also
numpy.all
equivalent function
- any(axis=None, out=None, keepdims=False, *, where=True)¶
Returns True if any of the elements of a evaluate to True.
Refer to numpy.any for full documentation.
See also
numpy.any
equivalent function
- argmax(axis=None, out=None, *, keepdims=False)¶
Return indices of the maximum values along the given axis.
Refer to numpy.argmax for full documentation.
See also
numpy.argmax
equivalent function
- argmin(axis=None, out=None, *, keepdims=False)¶
Return indices of the minimum values along the given axis.
Refer to numpy.argmin for detailed documentation.
See also
numpy.argmin
equivalent function
- argpartition(kth, axis=-1, kind='introselect', order=None)¶
Returns the indices that would partition this array.
Refer to numpy.argpartition for full documentation.
New in version 1.8.0.
See also
numpy.argpartition
equivalent function
- argsort(axis=-1, kind=None, order=None)¶
Returns the indices that would sort this array.
Refer to numpy.argsort for full documentation.
See also
numpy.argsort
equivalent function
- astype(dtype, order='K', casting='unsafe', subok=True, copy=True)¶
Copy of the array, cast to a specified type.
- Parameters:
dtype (str or dtype) – Typecode or data-type to which the array is cast.
order ({'C', 'F', 'A', 'K'}, optional) – Controls the memory layout order of the result. ‘C’ means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in memory as possible. Default is ‘K’.
casting ({'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional) –
Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards compatibility.
’no’ means the data types should not be cast at all.
’equiv’ means only byte-order changes are allowed.
’safe’ means only casts which can preserve values are allowed.
’same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
’unsafe’ means any data conversions may be done.
subok (bool, optional) – If True, then sub-classes will be passed-through (default), otherwise the returned array will be forced to be a base-class array.
copy (bool, optional) – By default, astype always returns a newly allocated array. If this is set to false, and the dtype, order, and subok requirements are satisfied, the input array is returned instead of a copy.
- Returns:
arr_t – Unless copy is False and the other conditions for returning the input array are satisfied (see description for copy input parameter), arr_t is a new array of the same shape as the input array, with dtype, order given by dtype, order.
- Return type:
ndarray
Notes
Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for “unsafe” casting. Casting to multiple fields is allowed, but casting from multiple fields is not.
Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the string dtype length is long enough to store the max integer/float value converted.
- Raises:
ComplexWarning – When casting from complex to float or int. To avoid this, one should use
a.real.astype(t)
.
Examples
>>> x = np.array([1, 2, 2.5]) >>> x array([1. , 2. , 2.5])
>>> x.astype(int) array([1, 2, 2])
- property atnum¶
Get the atomic numbers of all atoms in
MultiMolecule.atoms
as 1D array.
- property atom1¶
Get or set the indices of the first atoms in all bonds of
MultiMolecule.bonds
as 1D array.
- property atom12¶
Get or set the indices of the atoms for all bonds in
MultiMolecule.bonds
as 2D array.
- property atom2¶
Get or set the indices of the second atoms in all bonds of
MultiMolecule.bonds
as 1D array.
- base¶
Base object if memory is from some other object.
Examples
The base of an array that owns its memory is None:
>>> x = np.array([1,2,3,4]) >>> x.base is None True
Slicing creates a view, whose memory is shared with x:
>>> y = x[2:] >>> y.base is x True
- byteswap(inplace=False)¶
Swap the bytes of the array elements
Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex number are swapped individually.
- Parameters:
inplace (bool, optional) – If
True
, swap bytes in-place, default isFalse
.- Returns:
out – The byteswapped array. If inplace is
True
, this is a view to self.- Return type:
ndarray
Examples
>>> A = np.array([1, 256, 8755], dtype=np.int16) >>> list(map(hex, A)) ['0x1', '0x100', '0x2233'] >>> A.byteswap(inplace=True) array([ 256, 1, 13090], dtype=int16) >>> list(map(hex, A)) ['0x100', '0x1', '0x3322']
Arrays of byte-strings are not swapped
>>> A = np.array([b'ceg', b'fac']) >>> A.byteswap() array([b'ceg', b'fac'], dtype='|S3')
A.newbyteorder().byteswap()
produces an array with the same valuesbut different representation in memory
>>> A = np.array([1, 2, 3]) >>> A.view(np.uint8) array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0], dtype=uint8) >>> A.newbyteorder().byteswap(inplace=True) array([1, 2, 3]) >>> A.view(np.uint8) array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3], dtype=uint8)
- choose(choices, out=None, mode='raise')¶
Use an index array to construct a new array from a set of choices.
Refer to numpy.choose for full documentation.
See also
numpy.choose
equivalent function
- clip(min=None, max=None, out=None, **kwargs)¶
Return an array whose values are limited to
[min, max]
. One of max or min must be given.Refer to numpy.clip for full documentation.
See also
numpy.clip
equivalent function
- compress(condition, axis=None, out=None)¶
Return selected slices of this array along given axis.
Refer to numpy.compress for full documentation.
See also
numpy.compress
equivalent function
- conj()¶
Complex-conjugate all elements.
Refer to numpy.conjugate for full documentation.
See also
numpy.conjugate
equivalent function
- conjugate()¶
Return the complex conjugate, element-wise.
Refer to numpy.conjugate for full documentation.
See also
numpy.conjugate
equivalent function
- property connectors¶
Get the atomic connectors of all atoms in
MultiMolecule.atoms
as 1D array.
- copy(order='C', *, deep=True)¶
Create a copy of this instance.
- Parameters:
order (
str
) – Controls the memory layout of the copy. Seendarray.copy
for details.copy_attr (
bool
) – Whether or not the attributes of this instance should be returned as copies or views.
- Returns:
A copy of this instance.
- Return type:
- ctypes¶
An object to simplify the interaction of the array with the ctypes module.
This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which themselves return ctypes objects that can be used as arguments to a shared library.
- Parameters:
None –
- Returns:
c – Possessing attributes data, shape, strides, etc.
- Return type:
Python object
See also
Notes
Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted undocumented public attributes, as well as documented private attributes):
- _ctypes.data
A pointer to the memory area of the array as a Python integer. This memory area may contain data that is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as
self._array_interface_['data'][0]
.Note that unlike
data_as
, a reference will not be kept to the array: code likectypes.c_void_p((a + b).ctypes.data)
will result in a pointer to a deallocated array, and should be spelt(a + b).ctypes.data_as(ctypes.c_void_p)
- _ctypes.shape
A ctypes array of length self.ndim where the basetype is the C-integer corresponding to
dtype('p')
on this platform (see ~numpy.ctypeslib.c_intp). This base-type could be ctypes.c_int, ctypes.c_long, or ctypes.c_longlong depending on the platform. The ctypes array contains the shape of the underlying array.- Type:
(c_intp*self.ndim)
- _ctypes.strides
A ctypes array of length self.ndim where the basetype is the same as for the shape attribute. This ctypes array contains the strides information from the underlying array. This strides information is important for showing how many bytes must be jumped to get to the next element in the array.
- Type:
(c_intp*self.ndim)
- _ctypes.data_as(obj)
Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_
is equivalent toself.data_as(ctypes.c_void_p)
. Perhaps you want to use the data as a pointer to a ctypes array of floating-point data:self.data_as(ctypes.POINTER(ctypes.c_double))
.The returned pointer will keep a reference to the array.
- _ctypes.shape_as(obj)
Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short)
.
- _ctypes.strides_as(obj)
Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong)
.
If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful, but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the
as_parameter
attribute which will return an integer equal to the data attribute.Examples
>>> import ctypes >>> x = np.array([[0, 1], [2, 3]], dtype=np.int32) >>> x array([[0, 1], [2, 3]], dtype=int32) >>> x.ctypes.data 31962608 # may vary >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)) <__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents c_uint(0) >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents c_ulong(4294967296) >>> x.ctypes.shape <numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1fce60> # may vary >>> x.ctypes.strides <numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1ff320> # may vary
- cumprod(axis=None, dtype=None, out=None)¶
Return the cumulative product of the elements along the given axis.
Refer to numpy.cumprod for full documentation.
See also
numpy.cumprod
equivalent function
- cumsum(axis=None, dtype=None, out=None)¶
Return the cumulative sum of the elements along the given axis.
Refer to numpy.cumsum for full documentation.
See also
numpy.cumsum
equivalent function
- data¶
Python buffer object pointing to the start of the array’s data.
- diagonal(offset=0, axis1=0, axis2=1)¶
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in previous NumPy versions. In a future version the read-only restriction will be removed.
Refer to
numpy.diagonal()
for full documentation.See also
numpy.diagonal
equivalent function
- dtype¶
Data-type of the array’s elements.
Warning
Setting
arr.dtype
is discouraged and may be deprecated in the future. Setting will replace thedtype
without modifying the memory (see also ndarray.view and ndarray.astype).- Parameters:
None –
- Returns:
d
- Return type:
numpy dtype object
See also
ndarray.astype
Cast the values contained in the array to a new data-type.
ndarray.view
Create a view of the same data but a different data-type.
Examples
>>> x array([[0, 1], [2, 3]]) >>> x.dtype dtype('int32') >>> type(x.dtype) <type 'numpy.dtype'>
- dump(file)¶
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.
- Parameters:
file (str or Path) –
A string naming the dump file.
Changed in version 1.17.0: pathlib.Path objects are now accepted.
- dumps()¶
Returns the pickle of the array as a string. pickle.loads will convert the string back to an array.
- Parameters:
None –
- fill(value)¶
Fill the array with a scalar value.
- Parameters:
value (scalar) – All elements of a will be assigned this value.
Examples
>>> a = np.array([1, 2]) >>> a.fill(0) >>> a array([0, 0]) >>> a = np.empty(2) >>> a.fill(1) >>> a array([1., 1.])
Fill expects a scalar value and always behaves the same as assigning to a single array element. The following is a rare example where this distinction is important:
>>> a = np.array([None, None], dtype=object) >>> a[0] = np.array(3) >>> a array([array(3), None], dtype=object) >>> a.fill(np.array(3)) >>> a array([array(3), array(3)], dtype=object)
Where other forms of assignments will unpack the array being assigned:
>>> a[...] = np.array(3) >>> a array([3, 3], dtype=object)
- flags¶
Information about the memory layout of the array.
- C_CONTIGUOUS(C)¶
The data is in a single, C-style contiguous segment.
- F_CONTIGUOUS(F)¶
The data is in a single, Fortran-style contiguous segment.
- OWNDATA(O)¶
The array owns the memory it uses or borrows it from another object.
- WRITEABLE(W)¶
The data area can be written to. Setting this to False locks the data, making it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a writeable array may be subsequently locked while the base array remains writeable. (The opposite is not true, in that a view of a locked array may not be made writeable. However, currently, locking a base object does not lock any views that already reference it, so under that circumstance it is possible to alter the contents of a locked array via a previously created writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError exception.
- ALIGNED(A)¶
The data and all elements are aligned appropriately for the hardware.
- WRITEBACKIFCOPY(X)¶
This array is a copy of some other array. The C-API function PyArray_ResolveWritebackIfCopy must be called before deallocating to the base array will be updated with the contents of this array.
- FNC¶
F_CONTIGUOUS and not C_CONTIGUOUS.
- FORC¶
F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
- BEHAVED(B)¶
ALIGNED and WRITEABLE.
- CARRAY(CA)¶
BEHAVED and C_CONTIGUOUS.
- FARRAY(FA)¶
BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
Notes
The flags object can be accessed dictionary-like (as in
a.flags['WRITEABLE']
), or by using lowercased attribute names (as ina.flags.writeable
). Short flag names are only supported in dictionary access.Only the WRITEBACKIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct assignment to the attribute or dictionary entry, or by calling ndarray.setflags.
The array flags cannot be set arbitrarily:
WRITEBACKIFCOPY can only be set
False
.ALIGNED can only be set
True
if the data is truly aligned.WRITEABLE can only be set
True
if the array owns its own memory or the ultimate owner of the memory exposes a writeable buffer interface or is a string.
Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays, but can also be true for higher dimensional arrays.
Even for contiguous arrays a stride for a given dimension
arr.strides[dim]
may be arbitrary ifarr.shape[dim] == 1
or the array has no elements. It does not generally hold thatself.strides[-1] == self.itemsize
for C-style contiguous arrays orself.strides[0] == self.itemsize
for Fortran-style contiguous arrays is true.
- flat¶
A 1-D iterator over the array.
This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator object.
Examples
>>> x = np.arange(1, 7).reshape(2, 3) >>> x array([[1, 2, 3], [4, 5, 6]]) >>> x.flat[3] 4 >>> x.T array([[1, 4], [2, 5], [3, 6]]) >>> x.T.flat[3] 5 >>> type(x.flat) <class 'numpy.flatiter'>
An assignment example:
>>> x.flat = 3; x array([[3, 3, 3], [3, 3, 3]]) >>> x.flat[[1,4]] = 1; x array([[3, 1, 3], [3, 1, 3]])
- flatten(order='C')¶
Return a copy of the array collapsed into one dimension.
- Parameters:
order ({'C', 'F', 'A', 'K'}, optional) – ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the elements occur in memory. The default is ‘C’.
- Returns:
y – A copy of the input array, flattened to one dimension.
- Return type:
ndarray
Examples
>>> a = np.array([[1,2], [3,4]]) >>> a.flatten() array([1, 2, 3, 4]) >>> a.flatten('F') array([1, 3, 2, 4])
- getfield(dtype, offset=0)¶
Returns a field of the given array as a certain type.
A field is a view of the array data with a given data-type. The values in the view are determined by the given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.
- Parameters:
Examples
>>> x = np.diag([1.+1.j]*2) >>> x[1, 1] = 2 + 4.j >>> x array([[1.+1.j, 0.+0.j], [0.+0.j, 2.+4.j]]) >>> x.getfield(np.float64) array([[1., 0.], [0., 2.]])
By choosing an offset of 8 bytes we can select the complex part of the array for our view:
>>> x.getfield(np.float64, offset=8) array([[1., 0.], [0., 4.]])
- imag¶
The imaginary part of the array.
Examples
>>> x = np.sqrt([1+0j, 0+1j]) >>> x.imag array([ 0. , 0.70710678]) >>> x.imag.dtype dtype('float64')
- item(*args)¶
Copy an element of an array to a standard Python scalar and return it.
- Parameters:
*args (Arguments (variable number and type)) –
none: in this case, the method only works for arrays with one element (a.size == 1), which element is copied into a standard Python scalar object and returned.
int_type: this argument is interpreted as a flat index into the array, specifying which element to copy and return.
tuple of int_types: functions as does a single int_type argument, except that the argument is interpreted as an nd-index into the array.
- Returns:
z – A copy of the specified element of the array as a suitable Python scalar
- Return type:
Standard Python scalar object
Notes
When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless fields are defined, in which case a tuple is returned.
item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array using Python’s optimized math.
Examples
>>> np.random.seed(123) >>> x = np.random.randint(9, size=(3, 3)) >>> x array([[2, 2, 6], [1, 3, 6], [1, 0, 1]]) >>> x.item(3) 1 >>> x.item(7) 0 >>> x.item((0, 1)) 2 >>> x.item((2, 2)) 1
- itemset(*args)¶
Insert scalar into an array (scalar is cast to array’s dtype, if possible)
There must be at least 1 argument, and define the last argument as item. Then,
a.itemset(*args)
is equivalent to but faster thana[args] = item
. The item should be a scalar value and args must select a single item in the array a.- Parameters:
*args (Arguments) – If one argument: a scalar, only used in case a is of size 1. If two arguments: the last argument is the value to be set and must be a scalar, the first argument specifies a single array element location. It is either an int or a tuple.
Notes
Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular location in an ndarray, if you must do this. However, generally this is discouraged: among other problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.
Examples
>>> np.random.seed(123) >>> x = np.random.randint(9, size=(3, 3)) >>> x array([[2, 2, 6], [1, 3, 6], [1, 0, 1]]) >>> x.itemset(4, 0) >>> x.itemset((2, 2), 9) >>> x array([[2, 2, 6], [1, 0, 6], [1, 0, 9]])
- itemsize¶
Length of one array element in bytes.
Examples
>>> x = np.array([1,2,3], dtype=np.float64) >>> x.itemsize 8 >>> x = np.array([1,2,3], dtype=np.complex128) >>> x.itemsize 16
- property loc¶
A getter and setter for atom-type-based slicing.
Get, set and del operations are performed using the list(s) of atomic indices associated with the provided atomic symbol(s). Accepts either one or more atomic symbols.
Examples
>>> mol = MultiMolecule(...) >>> mol.atoms = { ... 'Cd': [0, 1, 2, 3, 4, 5], ... 'Se': [6, 7, 8, 9, 10, 11], ... 'O': [12, 13, 14], ... } >>> (mol.loc['Cd'] == mol[mol.atoms['Cd']]).all() True >>> idx = [] >>> for atom in ["Cd", "Se", "O"]: ... idx += mol.atoms[atom].tolist() >>> (mol.loc['Cd', 'Se', 'O'] == mol[idx]).all() True >>> mol.loc['Cd'] = 1 >>> print((mol.loc['Cd'] == 1).all()) True >>> del mol.loc['Cd'] ValueError: cannot delete array elements
- Parameters:
mol (
FOX.MultiMolecule
) – A MultiMolecule instance; see_MolLoc.mol
.
- mol¶
A MultiMolecule instance.
- Type:
- atoms_view¶
A read-only view of
_MolLoc.mol.atoms
.- Type:
- property mass¶
Get the atomic masses of all atoms in
MultiMolecule.atoms
as 1D array.
- max(axis=None, out=None, keepdims=False, initial=<no value>, where=True)¶
Return the maximum along a given axis.
Refer to numpy.amax for full documentation.
See also
numpy.amax
equivalent function
- mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True)¶
Returns the average of the array elements along given axis.
Refer to numpy.mean for full documentation.
See also
numpy.mean
equivalent function
- min(axis=None, out=None, keepdims=False, initial=<no value>, where=True)¶
Return the minimum along a given axis.
Refer to numpy.amin for full documentation.
See also
numpy.amin
equivalent function
- nbytes¶
Total bytes consumed by the elements of the array.
Notes
Does not include memory consumed by non-element attributes of the array object.
See also
sys.getsizeof
Memory consumed by the object itself without parents in case view. This does include memory consumed by non-element attributes.
Examples
>>> x = np.zeros((3,5,2), dtype=np.complex128) >>> x.nbytes 480 >>> np.prod(x.shape) * x.itemsize 480
- ndim¶
Number of array dimensions.
Examples
>>> x = np.array([1, 2, 3]) >>> x.ndim 1 >>> y = np.zeros((2, 3, 4)) >>> y.ndim 3
- newbyteorder(new_order='S', /)¶
Return the array with the same data viewed with a different byte order.
Equivalent to:
arr.view(arr.dtype.newbytorder(new_order))
Changes are also made in all fields and sub-arrays of the array data type.
- Parameters:
new_order (string, optional) –
Byte order to force; a value from the byte order specifications below. new_order codes can be any of:
’S’ - swap dtype from current to opposite endian
{‘<’, ‘little’} - little endian
{‘>’, ‘big’} - big endian
{‘=’, ‘native’} - native order, equivalent to sys.byteorder
{‘|’, ‘I’} - ignore (no change to byte order)
The default value (‘S’) results in swapping the current byte order.
- Returns:
new_arr – New array object with the dtype reflecting given change to the byte order.
- Return type:
array
- nonzero()¶
Return the indices of the elements that are non-zero.
Refer to numpy.nonzero for full documentation.
See also
numpy.nonzero
equivalent function
- property order¶
Get or set the bond orders for all bonds in
MultiMolecule.bonds
as 1D array.
- partition(kth, axis=-1, kind='introselect', order=None)¶
Rearranges the elements in the array in such a way that the value of the element in kth position is in the position it would be in a sorted array. All elements smaller than the kth element are moved before this element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is undefined.
New in version 1.8.0.
- Parameters:
kth (int or sequence of ints) –
Element index to partition by. The kth element value will be in its final sorted position and all smaller elements will be moved before it and all equal or greater elements behind it. The order of all elements in the partitions is undefined. If provided with a sequence of kth it will partition all elements indexed by kth of them into their sorted position at once.
Deprecated since version 1.22.0: Passing booleans as index is deprecated.
axis (int, optional) – Axis along which to sort. Default is -1, which means sort along the last axis.
kind ({'introselect'}, optional) – Selection algorithm. Default is ‘introselect’.
order (str or list of str, optional) – When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need to be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.
See also
numpy.partition
Return a partitioned copy of an array.
argpartition
Indirect partition.
sort
Full sort.
Notes
See
np.partition
for notes on the different algorithms.Examples
>>> a = np.array([3, 4, 2, 1]) >>> a.partition(3) >>> a array([2, 1, 3, 4])
>>> a.partition((1, 3)) >>> a array([1, 2, 3, 4])
- prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)¶
Return the product of the array elements over the given axis
Refer to numpy.prod for full documentation.
See also
numpy.prod
equivalent function
- ptp(axis=None, out=None, keepdims=False)¶
Peak to peak (maximum - minimum) value along a given axis.
Refer to numpy.ptp for full documentation.
See also
numpy.ptp
equivalent function
- put(indices, values, mode='raise')¶
Set
a.flat[n] = values[n]
for all n in indices.Refer to numpy.put for full documentation.
See also
numpy.put
equivalent function
- property radius¶
Get the atomic radii of all atoms in
MultiMolecule.atoms
as 1d array.
- ravel([order])¶
Return a flattened array.
Refer to numpy.ravel for full documentation.
See also
numpy.ravel
equivalent function
ndarray.flat
a flat iterator on the array.
- real¶
The real part of the array.
Examples
>>> x = np.sqrt([1+0j, 0+1j]) >>> x.real array([ 1. , 0.70710678]) >>> x.real.dtype dtype('float64')
See also
numpy.real
equivalent function
- repeat(repeats, axis=None)¶
Repeat elements of an array.
Refer to numpy.repeat for full documentation.
See also
numpy.repeat
equivalent function
- reshape(shape, order='C')¶
Returns an array containing the same data with a new shape.
Refer to numpy.reshape for full documentation.
See also
numpy.reshape
equivalent function
Notes
Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape parameter to be passed in as separate arguments. For example,
a.reshape(10, 11)
is equivalent toa.reshape((10, 11))
.
- resize(new_shape, refcheck=True)¶
Change shape and size of array in-place.
- Parameters:
new_shape (tuple of ints, or n ints) – Shape of resized array.
refcheck (bool, optional) – If False, reference count will not be checked. Default is True.
- Return type:
None
- Raises:
ValueError – If a does not own its own data or references or views to it exist, and the data memory must be changed. PyPy only: will always raise if the data memory must be changed, since there is no reliable way to determine if references or views to it exist.
SystemError – If the order keyword argument is specified. This behaviour is a bug in NumPy.
See also
resize
Return a new array with the specified shape.
Notes
This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.
The purpose of the reference count check is to make sure you do not use this array as a buffer for another Python object and then reallocate the memory. However, reference counts can increase in other ways so if you are sure that you have not shared the memory for this array with another Python object, then you may safely set refcheck to False.
Examples
Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:
>>> a = np.array([[0, 1], [2, 3]], order='C') >>> a.resize((2, 1)) >>> a array([[0], [1]])
>>> a = np.array([[0, 1], [2, 3]], order='F') >>> a.resize((2, 1)) >>> a array([[0], [2]])
Enlarging an array: as above, but missing entries are filled with zeros:
>>> b = np.array([[0, 1], [2, 3]]) >>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple >>> b array([[0, 1, 2], [3, 0, 0]])
Referencing an array prevents resizing…
>>> c = a >>> a.resize((1, 1)) Traceback (most recent call last): ... ValueError: cannot resize an array that references or is referenced ...
Unless refcheck is False:
>>> a.resize((1, 1), refcheck=False) >>> a array([[0]]) >>> c array([[0]])
- searchsorted(v, side='left', sorter=None)¶
Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see numpy.searchsorted
See also
numpy.searchsorted
equivalent function
- setfield(val, dtype, offset=0)¶
Put a value into a specified place in a field defined by a data-type.
Place val into a’s field defined by dtype and beginning offset bytes into the field.
- Parameters:
- Return type:
None
See also
Examples
>>> x = np.eye(3) >>> x.getfield(np.float64) array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> x.setfield(3, np.int32) >>> x.getfield(np.int32) array([[3, 3, 3], [3, 3, 3], [3, 3, 3]], dtype=int32) >>> x array([[1.0e+000, 1.5e-323, 1.5e-323], [1.5e-323, 1.0e+000, 1.5e-323], [1.5e-323, 1.5e-323, 1.0e+000]]) >>> x.setfield(np.eye(3), np.int32) >>> x array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
- setflags(write=None, align=None, uic=None)¶
Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY, respectively.
These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITEBACKIFCOPY and flag can never be set to True. The flag WRITEABLE can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done without copying memory.)
- Parameters:
Notes
Array flags provide information about how the memory area used for the array is to be interpreted. There are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, WRITEABLE, and ALIGNED.
WRITEABLE (W) the data area can be written to;
ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);
WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of this array.
All flags can be accessed using the single (upper case) letter as well as the full name.
Examples
>>> y = np.array([[3, 1, 7], ... [2, 0, 0], ... [8, 5, 9]]) >>> y array([[3, 1, 7], [2, 0, 0], [8, 5, 9]]) >>> y.flags C_CONTIGUOUS : True F_CONTIGUOUS : False OWNDATA : True WRITEABLE : True ALIGNED : True WRITEBACKIFCOPY : False >>> y.setflags(write=0, align=0) >>> y.flags C_CONTIGUOUS : True F_CONTIGUOUS : False OWNDATA : True WRITEABLE : False ALIGNED : False WRITEBACKIFCOPY : False >>> y.setflags(uic=1) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: cannot set WRITEBACKIFCOPY flag to True
- shape¶
Tuple of array dimensions.
The shape property is usually used to get the current shape of an array, but may also be used to reshape the array in-place by assigning a tuple of array dimensions to it. As with numpy.reshape, one of the new shape dimensions can be -1, in which case its value is inferred from the size of the array and the remaining dimensions. Reshaping an array in-place will fail if a copy is required.
Warning
Setting
arr.shape
is discouraged and may be deprecated in the future. Using ndarray.reshape is the preferred approach.Examples
>>> x = np.array([1, 2, 3, 4]) >>> x.shape (4,) >>> y = np.zeros((2, 3, 4)) >>> y.shape (2, 3, 4) >>> y.shape = (3, 8) >>> y array([[ 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0.]]) >>> y.shape = (3, 6) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: total size of new array must be unchanged >>> np.zeros((4,2))[::2].shape = (-1,) Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: Incompatible shape for in-place modification. Use `.reshape()` to make a copy with the desired shape.
See also
numpy.shape
Equivalent getter function.
numpy.reshape
Function similar to setting
shape
.ndarray.reshape
Method similar to setting
shape
.
- size¶
Number of elements in the array.
Equal to
np.prod(a.shape)
, i.e., the product of the array’s dimensions.Notes
a.size returns a standard arbitrary precision Python integer. This may not be the case with other methods of obtaining the same value (like the suggested
np.prod(a.shape)
, which returns an instance ofnp.int_
), and may be relevant if the value is used further in calculations that may overflow a fixed size integer type.Examples
>>> x = np.zeros((3, 5, 2), dtype=np.complex128) >>> x.size 30 >>> np.prod(x.shape) 30
- squeeze(axis=None)¶
Remove axes of length one from a.
Refer to numpy.squeeze for full documentation.
See also
numpy.squeeze
equivalent function
- std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)¶
Returns the standard deviation of the array elements along given axis.
Refer to numpy.std for full documentation.
See also
numpy.std
equivalent function
- strides¶
Tuple of bytes to step in each dimension when traversing an array.
The byte offset of element
(i[0], i[1], ..., i[n])
in an array a is:offset = sum(np.array(i) * a.strides)
A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.
Warning
Setting
arr.strides
is discouraged and may be deprecated in the future. numpy.lib.stride_tricks.as_strided should be preferred to create a new view of the same data in a safer way.Notes
Imagine an array of 32-bit integers (each 4 bytes):
x = np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], dtype=np.int32)
This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be
(20, 4)
.See also
Examples
>>> y = np.reshape(np.arange(2*3*4), (2,3,4)) >>> y array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) >>> y.strides (48, 16, 4) >>> y[1,1,1] 17 >>> offset=sum(y.strides * np.array((1,1,1))) >>> offset/y.itemsize 17
>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0) >>> x.strides (32, 4, 224, 1344) >>> i = np.array([3,5,2,2]) >>> offset = sum(i * x.strides) >>> x[3,5,2,2] 813 >>> offset / x.itemsize 813
- sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)¶
Return the sum of the array elements over the given axis.
Refer to numpy.sum for full documentation.
See also
numpy.sum
equivalent function
- swapaxes(axis1, axis2)¶
Return a view of the array with axis1 and axis2 interchanged.
Refer to numpy.swapaxes for full documentation.
See also
numpy.swapaxes
equivalent function
- property symbol¶
Get the atomic symbols of all atoms in
MultiMolecule.atoms
as 1D array.
- take(indices, axis=None, out=None, mode='raise')¶
Return an array formed from the elements of a at the given indices.
Refer to numpy.take for full documentation.
See also
numpy.take
equivalent function
- tobytes(order='C')¶
Construct Python bytes containing the raw data bytes in the array.
Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object is produced in C-order by default. This behavior is controlled by the
order
parameter.New in version 1.9.0.
- Parameters:
order ({'C', 'F', 'A'}, optional) – Controls the memory layout of the bytes object. ‘C’ means C-order, ‘F’ means F-order, ‘A’ (short for Any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. Default is ‘C’.
- Returns:
s – Python bytes exhibiting a copy of a’s raw data.
- Return type:
See also
frombuffer
Inverse of this operation, construct a 1-dimensional array from Python bytes.
Examples
>>> x = np.array([[0, 1], [2, 3]], dtype='<u2') >>> x.tobytes() b'\x00\x00\x01\x00\x02\x00\x03\x00' >>> x.tobytes('C') == x.tobytes() True >>> x.tobytes('F') b'\x00\x00\x02\x00\x01\x00\x03\x00'
- tofile(fid, sep='', format='%s')¶
Write array to a file as text or binary (default).
Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be recovered using the function fromfile().
- Parameters:
fid (file or str or Path) –
An open file object, or a string containing a filename.
Changed in version 1.17.0: pathlib.Path objects are now accepted.
sep (str) – Separator between array items for text output. If “” (empty), a binary file is written, equivalent to
file.write(a.tobytes())
.format (str) – Format string for text file output. Each entry in the array is formatted to text by first converting it to the closest Python type, and then using “format” % item.
Notes
This is a convenience function for quick storage of array data. Information on endianness and precision is lost, so this method is not a good choice for files intended to archive data or transport data between machines with different endianness. Some of these problems can be overcome by outputting the data as text files, at the expense of speed and file size.
When fid is a file object, array contents are directly written to the file, bypassing the file object’s
write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or file-like objects that do not supportfileno()
(e.g., BytesIO).
- tolist()¶
Return the array as an
a.ndim
-levels deep nested list of Python scalars.Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible builtin Python type, via the ~numpy.ndarray.item function.
If
a.ndim
is 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python scalar.- Parameters:
none –
- Returns:
y – The possibly nested list of array elements.
- Return type:
Notes
The array may be recreated via
a = np.array(a.tolist())
, although this may sometimes lose precision.Examples
For a 1D array,
a.tolist()
is almost the same aslist(a)
, except thattolist
changes numpy scalars to Python scalars:>>> a = np.uint32([1, 2]) >>> a_list = list(a) >>> a_list [1, 2] >>> type(a_list[0]) <class 'numpy.uint32'> >>> a_tolist = a.tolist() >>> a_tolist [1, 2] >>> type(a_tolist[0]) <class 'int'>
Additionally, for a 2D array,
tolist
applies recursively:>>> a = np.array([[1, 2], [3, 4]]) >>> list(a) [array([1, 2]), array([3, 4])] >>> a.tolist() [[1, 2], [3, 4]]
The base case for this recursion is a 0D array:
>>> a = np.array(1) >>> list(a) Traceback (most recent call last): ... TypeError: iteration over a 0-d array >>> a.tolist() 1
- tostring(order='C')¶
A compatibility alias for tobytes, with exactly the same behavior.
Despite its name, it returns bytes not strs.
Deprecated since version 1.19.0.
- trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)¶
Return the sum along diagonals of the array.
Refer to numpy.trace for full documentation.
See also
numpy.trace
equivalent function
- transpose(*axes)¶
Returns a view of the array with axes transposed.
Refer to numpy.transpose for full documentation.
- Parameters:
axes (None, tuple of ints, or n ints) –
None or no argument: reverses the order of the axes.
tuple of ints: i in the j-th place in the tuple means that the array’s i-th axis becomes the transposed array’s j-th axis.
n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience” alternative to the tuple form).
- Returns:
p – View of the array with its axes suitably permuted.
- Return type:
ndarray
See also
transpose
Equivalent function.
ndarray.T
Array property returning the array transposed.
ndarray.reshape
Give a new shape to an array without changing its data.
Examples
>>> a = np.array([[1, 2], [3, 4]]) >>> a array([[1, 2], [3, 4]]) >>> a.transpose() array([[1, 3], [2, 4]]) >>> a.transpose((1, 0)) array([[1, 3], [2, 4]]) >>> a.transpose(1, 0) array([[1, 3], [2, 4]])
>>> a = np.array([1, 2, 3, 4]) >>> a array([1, 2, 3, 4]) >>> a.transpose() array([1, 2, 3, 4])
- var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)¶
Returns the variance of the array elements, along given axis.
Refer to numpy.var for full documentation.
See also
numpy.var
equivalent function
- view([dtype][, type])¶
New view of array with the same data.
Note
Passing None for
dtype
is different from omitting the parameter, since the former invokesdtype(None)
which is an alias fordtype('float_')
.- Parameters:
dtype (data-type or ndarray sub-class, optional) – Data-type descriptor of the returned view, e.g., float32 or int16. Omitting it results in the view having the same data-type as a. This argument can also be specified as an ndarray sub-class, which then specifies the type of the returned object (this is equivalent to setting the
type
parameter).type (Python type, optional) – Type of the returned view, e.g., ndarray or matrix. Again, omission of the parameter results in type preservation.
Notes
a.view()
is used two different ways:a.view(some_dtype)
ora.view(dtype=some_dtype)
constructs a view of the array’s memory with a different data-type. This can cause a reinterpretation of the bytes of memory.a.view(ndarray_subclass)
ora.view(type=ndarray_subclass)
just returns an instance of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation of the memory.For
a.view(some_dtype)
, ifsome_dtype
has a different number of bytes per entry than the previous dtype (for example, converting a regular array to a structured array), then the last axis ofa
must be contiguous. This axis will be resized in the result.Changed in version 1.23.0: Only the last axis needs to be contiguous. Previously, the entire array had to be C-contiguous.
Examples
>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
Viewing array data using a different type and dtype:
>>> y = x.view(dtype=np.int16, type=np.matrix) >>> y matrix([[513]], dtype=int16) >>> print(type(y)) <class 'numpy.matrix'>
Creating a view on a structured array so it can be used in calculations
>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)]) >>> xv = x.view(dtype=np.int8).reshape(-1,2) >>> xv array([[1, 2], [3, 4]], dtype=int8) >>> xv.mean(0) array([2., 3.])
Making changes to the view changes the underlying array
>>> xv[0,1] = 20 >>> x array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])
Using a view to convert an array to a recarray:
>>> z = x.view(np.recarray) >>> z.a array([1, 3], dtype=int8)
Views share data:
>>> x[0] = (9, 10) >>> z[0] (9, 10)
Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices, transposes, fortran-ordering, etc.:
>>> x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16) >>> y = x[:, ::2] >>> y array([[1, 3], [4, 6]], dtype=int16) >>> y.view(dtype=[('width', np.int16), ('length', np.int16)]) Traceback (most recent call last): ... ValueError: To change to a dtype of a different size, the last axis must be contiguous >>> z = y.copy() >>> z.view(dtype=[('width', np.int16), ('length', np.int16)]) array([[(1, 3)], [(4, 6)]], dtype=[('width', '<i2'), ('length', '<i2')])
However, views that change dtype are totally fine for arrays with a contiguous last axis, even if the rest of the axes are not C-contiguous:
>>> x = np.arange(2 * 3 * 4, dtype=np.int8).reshape(2, 3, 4) >>> x.transpose(1, 0, 2).view(np.int16) array([[[ 256, 770], [3340, 3854]], [[1284, 1798], [4368, 4882]], [[2312, 2826], [5396, 5910]]], dtype=int16)
- property x¶
Get or set the x coordinates for all atoms in instance as 2D array.
- property y¶
Get or set the y coordinates for all atoms in this instance as 2D array.
- property z¶
Get or set the z coordinates for all atoms in this instance as 2D array.
- as_pdb(filename, mol_subset=0)[source]¶
Convert a MultiMolecule object into one or more Protein DataBank files (.pdb).
Utilizes the
plams.Molecule.write
method.- Parameters:
filename (path-like object) – The path+filename (including extension) of the to be created file.
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.
- as_mol2(filename, mol_subset=0)[source]¶
Convert a
FOX.MultiMolecule
object into one or more .mol2 files.Utilizes the
plams.Molecule.write
method.- Parameters:
filename (path-like object) – The path+filename (including extension) of the to be created file.
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.
- as_mol(filename, mol_subset=0)[source]¶
Convert a MultiMolecule object into one or more .mol files.
Utilizes the
plams.Molecule.write
method.- Parameters:
filename (path-like object) – The path+filename (including extension) of the to be created file.
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.
- as_xyz(filename, mol_subset=None)[source]¶
Create an .xyz file out of this instance.
Comments will be constructed by iteration through
MultiMolecule.properties["comments"]
if the following two conditions are fulfilled:The
"comments"
key is actually present inMultiMolecule.properties
.MultiMolecule.properties["comments"]
is an iterable.
- Parameters:
filename (path-like object) – The path+filename (including extension) of the to be created file.
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.
- as_gro(filename, mol_subset=0)[source]¶
Create an GROMACS .gro file out of this instance.
- Parameters:
filename (path-like object) – The path+filename (including extension) of the to be created file.
mol_subset (
int
, optional) – The index of the molecule in this instance that will be converted into the .gro file.
- as_mass_weighted(mol_subset=None, atom_subset=None, inplace=False)[source]¶
Transform the Cartesian of this instance into mass-weighted Cartesian coordinates.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.inplace (
bool
) – Instead of returning the new coordinates, perform an inplace update of this instance.
- Returns:
if inplace =
False
return a newMultiMolecule
instance with the mass-weighted Cartesian coordinates of \(m\) molecules with \(n\) atoms.- Return type:
np.ndarray[np.float64]
, shape \((m, n, 3)\), optional
- from_mass_weighted(mol_subset=None, atom_subset=None)[source]¶
Transform this instance from mass-weighted Cartesian into Cartesian coordinates.
Performs an inplace update of this instance.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.
- as_Molecule(mol_subset=None, atom_subset=None)[source]¶
Convert this instance into a list of plams.Molecule.
- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.
- Returns:
A list of \(m\) PLAMS molecules constructed from this instance.
- Return type:
- classmethod from_Molecule(mol_list, subset=frozenset({'atoms'}))[source]¶
Construct a
MultiMolecule
instance from one or more PLAMS molecules.- Parameters:
mol_list (
plams.Molecule
orSequence[plams.Molecule]
) – A PLAMS molecule or list of PLAMS molecules.subset (
Container[str]
, optional) – Transfer a subset of plams.Molecule attributes to this instance. IfNone
, transfer all attributes. Accepts one or more of the following values as strings:"properties"
,"atoms"
,"lattice"
and/or"bonds"
.
- Returns:
A molecule constructed from mol_list.
- Return type:
- as_ase(mol_subset=None, atom_subset=None, **kwargs)[source]¶
Convert this instance into a list of ASE
Atoms
.- Parameters:
mol_subset (
slice
, optional) – Perform the calculation on a subset of molecules in this instance, as determined by their moleculair index. Include all \(m\) molecules in this instance ifNone
.atom_subset (
Sequence[str]
, optional) – Perform the calculation on a subset of atoms in this instance, as determined by their atomic index or atomic symbol. Include all \(n\) atoms per molecule in this instance ifNone
.
- Returns:
A list of ASE Atoms constructed from this instance.
- Return type:
- classmethod from_ase(mol_list)[source]¶
Construct a
MultiMolecule
instance from one or more ASE Atoms.- Parameters:
mol_list (
ase.Atoms
orSequence[ase.Atoms]
) – An ASE Atoms instance or a list thereof.- Returns:
A molecule constructed from mol_list.
- Return type:
- classmethod from_xyz(filename, bonds=None, properties=None, read_comment=False)[source]¶
Construct a
MultiMolecule
instance from a (multi) .xyz file.Comment lines extracted from the .xyz file are stored, as array, under
MultiMolecule.properties["comments"]
.- Parameters:
filename (path-like object) – The path+filename of an .xyz file.
bonds (
np.ndarray[np.int64]
, shape \((k, 3)\)) – An optional 2D array with indices of the atoms defining all \(k\) bonds (columns 1 & 2) and their respective bond orders multiplied by 10 (column 3). Stored in the MultieMolecule.bonds attribute.properties (
dict
, optional) – A Settings object (subclass of dictionary) intended for storing miscellaneous user-defined (meta-)data. Is devoid of keys by default. Stored in the MultiMolecule.properties attribute.read_comments (
bool
) – IfTrue
, extract all comment lines from the passed .xyz file and store them underproperties.comments
.
- Returns:
A molecule constructed from filename.
- Return type:
- classmethod from_kf(filename, bonds=None, properties=None)[source]¶
Construct a
MultiMolecule
instance from a KF binary file.- Parameters:
filename (path-like object) – The path+filename of an KF binary file.
bonds (
np.ndarray[np.int64]
, shape \((k, 3)\)) – An optional 2D array with indices of the atoms defining all \(k\) bonds (columns 1 & 2) and their respective bond orders multiplied by 10 (column 3). Stored in the MultieMolecule.bonds attribute.properties (
dict
) – A Settings object (subclass of dictionary) intended for storing miscellaneous user-defined (meta-)data. Is devoid of keys by default. Stored in the MultiMolecule.properties attribute.
- Returns:
A molecule constructed from filename.
- Return type:
Addaptive Rate Monte Carlo¶
The general idea of the MonteCarlo class, and its subclasses, is to fit a classical potential energy surface (PES) to an ab-initio PES by optimizing the classical forcefield parameters. This forcefield optimization is conducted using the Addaptive Rate Monte Carlo (ARMC, 1) method described by S. Cosseddu et al in J. Chem. Theory Comput., 2017, 13, 297–308.
The implemented algorithm can be summarized as following:
The algorithm¶
A trial state, \(S_{l}\), is generated by moving a random parameter retrieved from a user-specified parameter set (e.g. atomic charge).
It is checked whether or not the trial state has been previously visited.
If
True
, retrieve the previously calculated PES.If
False
, calculate a new PES with the generated parameters \(S_{l}\).
The move is accepted if the new set of parameters, \(S_{l}\), lowers the auxiliary error (\(\Delta \varepsilon_{QM-MM}\)) with respect to the previous set of accepted parameters, \(S_{k}\) (see (1)). Given a PES descriptor, \(r\), consisting of a matrix with \(N\) elements, the auxiliary error is defined in (2).
The parameter history is updated. Based on whether or not the new parameter set is accepted the auxiliary error of either \(S_{l}\) or \(S_{k}\) is increased by the variable \(\phi\) (see (3)). In this manner, the underlying PES is continuously modified, preventing the optimizer from getting stuck in a (local) minima in the parameter space.
The parameter \(\phi\) is updated at regular intervals in order to maintain a constant acceptance rate, \(\alpha_{t}\). This is illustrated in (4), where \(\phi\) is updated the begining of every super-iteration \(\kappa\). In this example the total number of iterations, \(\kappa \omega\), is divided into \(\kappa\) super- and \(\omega\) sub-iterations.
Parameters¶
param:
charge:
param: charge
constraints:
- '0.5 < Cd < 1.5'
- '-0.5 > Se > -1.5'
- '0 > O_1 > -1'
Cd: 0.9768
Se: -0.9768
O_1: -0.47041
frozen:
C_1: 0.4524
lennard_jones:
- unit: kjmol
param: epsilon
Cd Cd: 0.3101
Se Se: 0.4266
Cd Se: 1.5225
Cd O_1: 1.8340
Se O_1: 1.6135
- unit: nm
param: sigma
Cd Cd: 0.1234
Se Se: 0.4852
Cd Se: 0.2940
Cd O_1: 0.2471
Se O_1: 0.3526
psf:
str_file: ligand.str
ligand_atoms: [C, O, H]
pes:
rdf:
func: FOX.MultiMolecule.init_rdf
kwargs:
atom_subset: [Cd, Se, O]
job:
molecule: .../mol.xyz
geometry_opt:
template: qmflows.templates.geometry.specific.cp2k_mm
settings:
cell_parameters: [50, 50, 50]
prm: .../ligand.prm
md:
template: qmflows.templates.md.specific.cp2k_mm
settings:
cell_parameters: [50, 50, 50]
prm: .../ligand.prm
A comprehensive overview of all available input parameters is provided in Monte Carlo Parameters.
Once a the .yaml file with the ARMC settings has been sufficiently customized
the parameter optimization can be started via the command prompt with:
init_armc my_settings.yaml
.
Previous caculations can be continued with init_armc my_settings.yaml --restart True
.
The pes block¶
Potential energy surface (PES) descriptors can be descriped in the pes
block.
Provided below is an example where the radial dsitribution function (RDF) is
used as PES descriptor, more specifically the RDF constructed from all possible
combinations of cadmium, selenium and oxygen atoms.
pes:
rdf:
func: FOX.MultiMolecule.init_rdf
kwarg:
atom_subset: [Cd, Se, O]
Depending on the system of interest it might be of interest to utilize a PES descriptor other than the RDF, or potentially even multiple PES descriptors. In the latter case the the total auxiliary error is defined as the sum of the auxiliary errors of all individual PES descriptors, \(R\) (see (5)).
An example is provided below where both radial and angular distribution functions (RDF and ADF, respectively) are are used as PES descriptors. In this example the RDF is construced for all combinations of cadmium, selenium and oxygen atoms (Cd, Se & O), whereas the ADF is construced for all combinations of cadmium and selenium atoms (Cd & Se).
pes:
rdf:
func: FOX.MultiMolecule.init_rdf
kwargs:
atom_subset: [Cd, Se, O]
adf:
func: FOX.MultiMolecule.init_adf
kwargs:
atom_subset: [Cd, Se]
In principle any function, class or method can be provided here, as type object, as long as the following requirements are fulfilled:
The name of the block must consist of a user-specified string (
rdf
andadf
in the example(s) above).The
func
key must contain a string representation of thee requested function, method or class. Auto-FOX will internally convert the string into a callable object.The supplied callable must be able to operate on NumPy arrays or instances of its
FOX.MultiMolecule
subclass.Keyword argument can be provided with the
kwargs
key. Thekwargs
key is entirely optional and can be skipped if desired.
An example of a custom, albit rather nonsensical, PES descriptor involving the
numpy.sum()
function is provided below:
pes:
numpy_sum:
func: numpy.sum
kwargs:
axis: 0
This .yaml input, given a MultiMolecule
instance mol
, is equivalent to:
>>> import numpy
>>> from FOX import MultiMolecule
>>> func = numpy.sum
>>> kwargs = {'axis': 0}
>>> mol = MultiMolecule(...)
>>> func(mol, **kwargs)
The param block¶
param:
charge:
param: charge
constraints:
- Cs == -0.5 * Br
- 0 < Cs < 2
- 1 < Pb < 3
Cs: 1.000
Pb: 2.000
lennard_jones:
- param: epsilon
unit: kjmol
Cs Cs: 0.1882
Cs Pb: 0.7227
Pb Pb: 2.7740
- unit: nm
param: sigma
constraints: Cs Cs == Pb Pb
Cs Cs: 0.60
Cs Pb: 0.50
Pb Pb: 0.60
The block
key in the .yaml input contains all user-specified
to-be optimized parameters.
There are three critical (and two optional) components to the "param"
block:
The sub-blocks containing either singular atoms or atom pairs.
Together, these three components point to the appropiate path of the forcefield parameter(s) of interest. As of the moment, all bonded and non-bonded potentials implemented in CP2K can be accessed via this section of the input file. For example, the following input is suitable if one wants to optimize a torsion potential (starting from \(k = 10 \ kcal/mol\)) for all C-C-C-C bonds:
param:
torsion:
param: k
unit: kcalmol
C C C C: 10
Besides the three above-mentioned mandatory components, one can (optionally) supply the unit of the parameter and/or constrain its value to a certain range. When supplying units, it is the responsibility of the user to ensure the units are supported by CP2K.
param:
charge:
constraints:
- Cd == -2 * $LIGAND
- 0 < Cd < 2
- -2 < Se < 0
Lastly, a number of constraints can be applied to the various parameters
in the form of minima/maxima and fixed ratios. The special $LIGAND
string can herein be used as an alias representing all atoms within a single
ligand. For example, when the formate anion is used as ligand (O2CH),
$LIGAND
is equivalent to 2 * O + C + H
.
Note
The charge
parameter is unique in that the total molecular charge is
always constrained; it will remain constant with respect to the initial
charge of the system. It is the users responsibiliy to ensure that the
initial charge is actually integer.
Parameter Guessing¶
param:
lennard_jones:
- unit: kjmol
param: epsilon
Cs Cs: 0.1882
Cs Pb: 0.7227
Pb Pb: 2.7740
guess: rdf
- unit: nm
param: sigma
frozen:
guess: uff
Non-bonded interactions (i.e. the Lennard-Jones \(\varepsilon\) and
\(\sigma\) values) can be guessed if they’re not explicitly by the user.
There are currently two implemented guessing procedures: "uff"
and
"rdf"
.
Parameter guessing for parameters other than \(\varepsilon\) and
\(\sigma\) is not supported as of the moment.
The "uff"
approach simply takes all missing parameters from
the Universal Force Field (UFF)[2].
Pair-wise parameters are construcetd using the standard combinatorial rules:
the arithmetic mean for \(\sigma\) and the geometric mean for
\(\varepsilon\).
The "rdf"
approach utilizes the radial distribution function for
estimating \(\sigma\) and \(\varepsilon\).
\(\sigma\) is taken as the base of the first RDF peak,
while the first minimum of the Boltzmann-inverted RDF is taken as
\(\varepsilon\).
"crystal_radius"
and "ion_radius"
use a similar approach to "uff"
,
the key difference being the origin of the parameters:
10.1107/S0567739476001551:
R. D. Shannon, Revised effective ionic radii and systematic studies of
interatomic distances in halides and chalcogenides, Acta Cryst. (1976). A32, 751-767.
Note that:
Values are averaged with respect to all charges and coordination numbers per atom type.
These two guess-types can only be used for estimating \(\sigma\) parameters.
If "guess"
is placed within the "frozen"
block, than the guessed
parameters will be treated as constants rather than to-be optimized variables.
State-averaged ARMC¶
...
molecule:
- /path/to/md_acetate.xyz
- /path/to/md_phosphate.xyz
- /path/to/md_sulfate.xyz
psf:
rtf_file:
- acetate.rtf
- phosphate.rtf
- sulfate.rtf
ligand_atoms: [S, P, O, C, H]
pes:
rdf:
func: FOX.MultiMolecule.init_rdf
kwargs:
- atom_subset: [Cd, Se, O]
- atom_subset: [Cd, Se, P, O]
- atom_subset: [Cd, Se, S, O]
...
Monte Carlo Parameters¶
Index¶
Description |
|
---|---|
The type of parameter mapping. |
|
The parameter move range. |
|
The callable for performing the Monte Carlo moves. |
|
A dictionary with keyword arguments for |
|
Whether to allow parameters, that are explicitly specified, for absent atoms. |
|
Check whether the net charge of the system is integer within a given tolerance. |
|
Whether to enforce the constraints for the initial user-specified parameters. |
|
The name of the forcefield parameter. |
|
The unit in which the forcefield parameters are expressed. |
|
A string or list of strings with parameter constraints. |
|
Estimate all non-specified forcefield parameters. |
|
A sub-block with to-be frozen parameters. |
Description |
|
---|---|
The path+filename to one or more stream file. |
|
The path+filename to one or more MATCH-produced rtf file. |
|
The path+filename to one or more psf files. |
|
All atoms within a ligand. |
Description |
|
---|---|
The callable for performing the Monte Carlo moves. |
|
A list of reference values for when |
|
A dictionary with keyword arguments for |
|
A function for computing the auxilary error of the specified PES descriptor. |
|
A list of weights for the |
Description |
|
---|---|
The callable for performing the Monte Carlo validation. |
|
A list of reference values for when |
|
A dictionary with keyword arguments for |
Description |
|
---|---|
The type of package manager. |
|
One or more .xyz files with reference (QM) potential energy surfaces. |
|
One or more CP2K .cell files with the lattice vectors of each mol in |
|
An instance of a QMFlows |
|
The job settings as used by |
|
A settings template for updating |
Description |
|
---|---|
The type of Monte Carlo procedure. |
|
The total number of ARMC iterations \(\kappa \omega\). |
|
The length of each ARMC subiteration \(\omega\). |
|
The name of the ARMC logfile. |
|
The name of the ARMC .hdf5 file. |
|
The path to the ARMC working directory. |
|
The name of the ARMC working directory. |
|
Whether to keep all raw output files or not. |
Description |
|
---|---|
The type of phi updater. |
|
The constant \(\gamma\). |
|
The target acceptance rate \(\alpha_{t}\). |
|
The initial value of the variable \(\phi\). |
|
The callable for updating |
|
A dictionary with keyword arguments for |
param¶
All forcefield-parameter related options.
This settings block accepts an arbitrary number of sub-blocks.
Examples
param:
type: FOX.armc.ParamMapping
move_range:
start: 0.005
stop: 0.1
step: 0.005
ratio: null
func: numpy.multiply
kwargs: {}
validation:
allow_non_existent: False
charge_tolerance: 0.01
enforce_constraints: False
charge:
param: charge
constraints:
- '0.5 < Cd < 1.5'
- '-0.5 > Se > -1.5'
Cd: 0.9768
Se: -0.9768
O_1: -0.47041
frozen:
C_1: 0.4524
lennard_jones:
- unit: kjmol
param: epsilon
Cd Cd: 0.3101
Se Se: 0.4266
Cd Se: 1.5225
frozen:
guess: uff
- unit: nm
param: sigma
Cd Cd: 0.1234
Se Se: 0.4852
Cd Se: 0.2940
frozen:
guess: uff
- param.type¶
- Parameter:
Type -
str
orFOX.armc.ParamMappingABC
subclassDefault Value -
"FOX.armc.ParamMapping"
The type of parameter mapping.
Used for storing and moving user-specified forcefield values.
See Also
FOX.armc.ParamMapping
A ParamMappingABC subclass.
- param.move_range¶
- Parameter:
Type - array-like or
dict
Default Value -
{"start": 0.005, "stop": 0.1, "step": 0.005, "ratio": None}
The parameter move range.
This value accepts one of the following two types of inputs:
A list of allowed moves (e.g.
[0.9, 0.95, 1.05, 1.0]
).
- A dictionary with the
"start"
,"stop"
and"step"
keys.For example, the list in 1. can be reproduced with
{"start": 0.05, "stop": 0.1, "step": 0.05, "ratio": None}
.When running the ARMC parallel procedure (
monte_carlo.type = FOX.armc.ARMCPT
) option 1. should be supplied as a nested list (e.g.[[0.9, 0.95, 1.05, 1.0], [0.8, 0.9, 1.1, 1.2]]
) and option 2. requires the additional"ratio"
keyword (e.g.[1, 2]
).
- param.func¶
- Parameter:
Type -
str
orCallable[[np.ndarray, np.ndarray], np.ndarray]
Default Value -
"numpy.multiply"
The callable for performing the Monte Carlo moves.
The passed callable should be able to take two NumPy arrays as a arguments and return a new one.
See Also
numpy.multiply()
Multiply arguments element-wise.
- param.kwargs¶
- Parameter:
Type -
dict[str, object]
Default Value -
{}
A dictionary with keyword arguments for
param.func
.
- param.validation.allow_non_existent¶
Whether to allow parameters, that are explicitly specified, for absent atoms.
This check is performed once, before the start of the ARMC procedure.
- param.validation.charge_tolerance¶
- Parameter:
Type -
float
Default Value -
0.01
Check whether the net charge of the system is integer within a given tolerance.
This check is performed once, before the start of the ARMC procedure. Setting this parameter to
inf
disables the check.
- param.validation.enforce_constraints¶
Whether to enforce the constraints for the initial user-specified parameters.
This option checks if the initially supplied parameters are compatible with all the supplied constraints; an error will be raised if this is not the case. Note that the constraints will always be enforced once the actual ARMC procedure starts.
- param.block.param¶
- Parameter:
Type -
str
The name of the forcefield parameter.
Important
Note that this option has no default value; one must be provided by the user.
- param.block.unit¶
- Parameter:
Type -
str
The unit in which the forcefield parameters are expressed.
See the CP2K manual for a comprehensive list of all available units.
- param.block.constraints¶
A string or list of strings with parameter constraints. Accepted types of constraints are minima/maxima (e.g.
2 > Cd > 0
) and fixed parameter ratios (e.g.Cd == -1 * Se
). The special$LIGAND
alias can be used for representing all atoms within a single ligand. For example,$LIGAND
is equivalent to2 * O + C + H
in the case of formate.
- param.block.guess¶
- Parameter:
Type -
dict[str, str]
Estimate all non-specified forcefield parameters.
If specified, expects a dictionary with the
"mode"
key, e.g.{"mode": "uff"}
or{"mode": "rdf"}
.
psf¶
Settings related to the construction of protein structure files (.psf).
Note that the psf.str_file
, psf.rtf_file
and
psf.psf_file
options are all mutually exclusive;
only one should be specified.
Furthermore, this block is completelly optional.
Examples
psf:
rtf_file: ligand.rtf
ligand_atoms: [C, O, H]
- psf.str_file¶
The path+filename to one or more stream files.
Used for assigning atom types and charges to ligands.
- psf.rtf_file¶
The path+filename to one or more MATCH-produced rtf files.
Used for assigning atom types and charges to ligands.
- psf.psf_file¶
The path+filename to one or more psf files.
Used for assigning atom types and charges to ligands.
pes¶
Settings to the construction of potentialy energy surface (PES) descriptors.
This settings block accepts an arbitrary number of sub-blocks,
each containg the func
and, optionally,
kwargs
keys.
Examples
pes:
rdf:
func: FOX.MultiMolecule.init_rdf
kwargs:
atom_subset: [Cd, Se, O]
adf:
func: FOX.MultiMolecule.init_adf
kwargs:
atom_subset: [Cd, Se]
energy:
func: FOX.properties.get_attr # i.e. `qmflows.Result(...).energy`
ref: [-17.0429775897]
kwargs:
name: energy
hirshfeld_charges:
func: FOX.properties.call_method # i.e. `qmflows.Result(...).get_hirshfeld_charges()`
ref:
- [-0.1116, 0.1930, -0.1680, -0.2606, 0.1702, 0.0598, 0.0575, 0.0598]
kwargs:
name: get_hirshfeld_charges
- pes.block.func¶
- Parameter:
A callable for constructing a PES descriptor.
The callable should return an array-like object and, as sole positional argument, take either a
FOX.MultiMolecule
orqmflows.Results
instance. In the latter case one must supply a list of reference PES-descriptor-values topes.block.ref
.Important
Note that this option has no default value; one must be provided by the user.
See Also
FOX.MultiMolecule.init_rdf()
Initialize the calculation of radial distribution functions (RDFs).
FOX.MultiMolecule.init_adf()
Initialize the calculation of angular distribution functions (ADFs).
- pes.block.ref¶
- Parameter:
Type -
list[ArrayLike]
orNone
Default Value -
None
A list of reference values for when
func
operates onqmflows.Result
objects.If not
None
, a list of array_like objects must be supplied here, one equal in length to the number of supplied molecules (seejob.molecule
).
- pes.block.kwargs¶
- Parameter:
Type -
dict[str, object]
Default Value -
{}
A dictionary with keyword arguments for
func
.
- pes.block.err_func¶
- Parameter:
Type -
str
orCallable[[ArrayLike, ArrayLike], float]
Default Value -
FOX.armc.default_error_func
A function for computing the auxilary error of the specified PES descriptor. The callable should be able to take two array-like objects as arguments and return a scalar.
See Also
FOX.armc.mse_normalized()
&FOX.armc.mse_normalized_v2()
Return a normalized mean square error (MSE) over the flattened input.
FOX.armc.mse_normalized_weighted()
&FOX.armc.mse_normalized_weighted_v2()
Return a normalized mean square error (MSE) over the flattened subarrays of the input.
FOX.armc.mse_normalized_max()
Return a maximum normalized mean square error (MSE) over the flattened subarrays of the input.
- pes.block.weight¶
- Parameter:
Type -
list[float]
Default Value -
[1.0]
A list of positive weights for the
err_func
output. The list must contain exactly one entry for every molecule injob.molecule
.
pes_validation¶
Settings to the construction of potentialy energy surface (PES) validators.
Functions identically w.r.t. to the pes block, the exception being that PES descriptors calculated herein are do not affect the error; they are only calculated for the purpose of validation.
This settings block accepts an arbitrary number of sub-blocks,
each containg the func
and, optionally,
kwargs
keys.
Examples
pes_validation:
adf:
func: FOX.MultiMolecule.init_adf
kwargs:
atom_subset: [Cd, Se]
mol_subset: !!python/object/apply:builtins.slice # i.e. slice(None, None, 10)
- null
- null
- 10
- pes_validation.block.func¶
- Parameter:
Type -
str
orCallable[[FOX.MultiMolecule], ArrayLike]
A callable for constructing a PES validators.
The callable should return an array-like object and, as sole positional argument, take either a
FOX.MultiMolecule
orqmflows.Results
instance. In the latter case one must supply a list of reference PES-descriptor-values topes_validation.block.ref
.The structure of this block is identintical to its counterpart in
pes.block.func
.Important
Note that this option has no default value; one must be provided by the user.
See Also
FOX.MultiMolecule.init_rdf()
Initialize the calculation of radial distribution functions (RDFs).
FOX.MultiMolecule.init_adf()
Initialize the calculation of angular distribution functions (ADFs).
- pes_validation.block.ref¶
- Parameter:
Type -
list[ArrayLike]
orNone
Default Value -
None
A list of reference values for when
func
operates onqmflows.Result
objects.If not
None
, a list of array_like objects must be supplied here, one equal in length to the number of supplied molecules (seejob.molecule
).
- pes_validation.block.kwargs¶
- Parameter:
Type -
dict[str, object]
orlist[dict[str, object]]
Default Value -
{}
A dictionary with keyword arguments for
func
.The structure of this block is identintical to its counterpart in
pes.block.kwargs
.Passing a list of dictionaries allows one the use different kwargs for different jobs in PES-averaged ARMC or ARMCPT:
job: molecule: - mol_CdSeO.xyz - mol_CdSeN.xyz pes_validation: rdf: func: FOX.MultiMolecule.init_rdf kwargs: - atom_subset: [Cd, Se, O] - atom_subset: [Cd, Se, N]
job¶
Settings related to the running of the various molecular mechanics jobs.
In addition to having two constant keys (type
and molecule
)
this block accepts an arbitrary number of sub-blocks representing quantum and/or classical
mechanical jobs.
In the example above there are two of such sub-blocks: geometry_opt
and md
.
The first step consists of a geometry optimization while the second one runs the
actual molecular dynamics calculation.
Note that these jobs are executed in the order as provided by the user-input.
Examples
job:
type: FOX.armc.PackageManager
molecule: .../mol.xyz
geometry_opt:
type: qmflows.cp2k_mm
settings:
prm: .../ligand.prm
cell_parameters: [50, 50, 50]
template: qmflows.templates.geometry.specific.cp2k_mm
md:
type: qmflows.cp2k_mm
settings:
prm: .../ligand.prm
cell_parameters: [50, 50, 50]
template: qmflows.templates.md.specific.cp2k_mm
- job.type¶
- Parameter:
Type -
str
orFOX.armc.PackageManagerABC
subclassDefault Value -
"FOX.armc.PackageManager"
The type of Auto-FOX package manager.
Used for managing and running the actual jobs.
See Also
FOX.armc.PackageManager
A PackageManagerABC subclass.
- job.molecule¶
One or more .xyz files with reference (QM) potential energy surfaces.
Important
Note that this option has no default value; one must be provided by the user.
- job.lattice¶
One or more CP2K .cell files with the lattice vectors of each mol in
job.molecule
.This option should be specified is one is performing calculations on periodic systems.
- job.block.type¶
- Parameter:
Type -
str
orqmflows.packages.Package
instanceDefault Value -
"qmflows.cp2k_mm"
An instance of a QMFlows Package.
See Also
qmflows.cp2k_mm
An instance of
CP2KMM
.
- job.block.settings¶
- Parameter:
Type -
dict
orlist[dict]
Default Value -
{}
The job settings as used by
type
.In the case of PES-averaged ARMC one can supply a list of dictionaries, each one representing the settings for its counterpart in
job.molecule
.If a
template
is specified then this block may or may not be redundant, depending on its completeness.
- job.block.template¶
A Settings template for updating
settings
.The template can be provided either as a dictionary or, alternativelly, an import path pointing to a pre-existing dictionary. For example,
"qmflows.templates.md.specific.cp2k_mm"
is equivalent toimport qmflows; template = qmflows.templates.md.specific.cp2k_mm
.See Also
qmflows.templates.md
Templates for molecular dynamics (MD) calculations.
qmflows.templates.geometry
Templates for geometry optimization calculations.
monte_carlo¶
Settings related to the Monte Carlo procedure itself.
Examples
monte_carlo:
type: FOX.armc.ARMC
iter_len: 50000
sub_iter_len: 10
logfile: armc.log
hdf5_file: armc.hdf5
path: .
folder: MM_MD_workdir
keep_files: False
- monte_carlo.type¶
- Parameter:
Type -
str
orFOX.armc.MonteCarloABC
subclassDefault Value -
"FOX.armc.ARMC"
The type of Monte Carlo procedure.
See Also
FOX.armc.ARMC
The Addaptive Rate Monte Carlo class.
FOX.armc.ARMCPT
An
ARMC
subclass implementing a parallel tempering procedure.
- monte_carlo.iter_len¶
- Parameter:
Type -
int
Default Value -
50000
The total number of ARMC iterations \(\kappa \omega\).
- monte_carlo.sub_iter_len¶
- Parameter:
Type -
int
Default Value -
100
The length of each ARMC subiteration \(\omega\).
- monte_carlo.hdf5_file¶
- Parameter:
Type -
str
Default Value -
"armc.hdf5"
The name of the ARMC .hdf5 file.
phi¶
Settings related to the ARMC \(\phi\) parameter.
Examples
phi:
type: FOX.armc.PhiUpdater
gamma: 2.0
a_target: 0.25
phi: 1.0
func: numpy.add
kwargs: {}
- phi.type¶
- Parameter:
Type -
str
orFOX.armc.PhiUpdaterABC
subclassDefault Value -
"FOX.armc.PhiUpdater"
The type of phi updater.
The phi updater is used for storing, keeping track of and updating \(\phi\).
See Also
FOX.armc.PhiUpdater
A class for applying and updating \(\phi\).
- phi.gamma¶
- Parameter:
Type -
float
orlist[float]
Default Value -
2.0
The constant \(\gamma\).
See (4). Note that a list must be supplied when running the ARMC parallel tempering procedure (
monte_carlo.type = FOX.armc.ARMCPT
)
- phi.a_target¶
- Parameter:
Type -
float
orlist[float]
Default Value -
0.25
The target acceptance rate \(\alpha_{t}\).
See (4). Note that a list must be supplied when running the ARMC parallel tempering procedure (
monte_carlo.type = FOX.armc.ARMCPT
)
- phi.phi¶
- Parameter:
Type -
float
orlist[float]
Default Value -
1.0
The initial value of the variable
phi
.See (3) and (4). Note that a list must be supplied when running the ARMC parallel tempering procedure (
monte_carlo.type = FOX.armc.ARMCPT
)
- phi.func¶
- Parameter:
Type -
str
orCallable[[float, float], float]
Default Value -
"numpy.add"
The callable for updating phi.
The passed callable should be able to take two floats as arguments and return a new float.
See Also
numpy.add()
Add arguments element-wise.
Multi-XYZ reader¶
A reader of multi-xyz files has been implemented in the
FOX.io.read_xyz
module. The .xyz fileformat is designed
for storing the atomic symbols and cartesian coordinates of one or more
molecules. The herein implemented FOX.io.read_xyz.read_multi_xyz()
function allows for the fast, and memory-effiecient, retrieval of the
various molecular geometries stored in an .xyz file.
An .xyz file, example_xyz_file
, can also be directly converted into
a FOX.MultiMolecule
instance.
>>> from FOX import MultiMolecule, example_xyz
>>> mol = MultiMolecule.from_xyz(example_xyz)
>>> print(type(mol))
<class 'FOX.classes.multi_mol.MultiMolecule'>
API¶
- FOX.io.read_xyz.read_multi_xyz(filename, return_comment=True, unit='angstrom')[source]¶
Read a (multi) .xyz file.
- Parameters:
- Returns:
\(m*n*3\) np.ndarray [np.float64], dict [str, list [int]] and
(optional) \(m\) np.ndarray [str] –
A 3D array with Cartesian coordinates of \(m\) molecules with \(n\) atoms.
A dictionary with atomic symbols as keys and lists of matching atomic indices as values.
(Optional) a 1D array with \(m\) comments.
- Raises:
.XYZError – Raised when issues are encountered related to parsing .xyz files.
- classmethod MultiMolecule.from_xyz(filename, bonds=None, properties=None, read_comment=False)[source]
Construct a
MultiMolecule
instance from a (multi) .xyz file.Comment lines extracted from the .xyz file are stored, as array, under
MultiMolecule.properties["comments"]
.- Parameters:
filename (path-like object) – The path+filename of an .xyz file.
bonds (
np.ndarray[np.int64]
, shape \((k, 3)\)) – An optional 2D array with indices of the atoms defining all \(k\) bonds (columns 1 & 2) and their respective bond orders multiplied by 10 (column 3). Stored in the MultieMolecule.bonds attribute.properties (
dict
, optional) – A Settings object (subclass of dictionary) intended for storing miscellaneous user-defined (meta-)data. Is devoid of keys by default. Stored in the MultiMolecule.properties attribute.read_comments (
bool
) – IfTrue
, extract all comment lines from the passed .xyz file and store them underproperties.comments
.
- Returns:
A molecule constructed from filename.
- Return type:
- FOX.example_xyz = '/home/docs/checkouts/readthedocs.org/user_builds/auto-fox/envs/latest/lib/python3.11/site-packages/FOX/data/Cd68Se55_26COO_MD_trajec.xyz'¶
The path+filename of the example multi-xyz file.
FOX.ff.lj_param¶
A module for estimating Lennard-Jones parameters.
Examples
>>> import pandas as pd
>>> from FOX import MultiMolecule, example_xyz, estimate_lennard_jones
>>> xyz_file: str = example_xyz
>>> atom_subset = ['Cd', 'Se', 'O']
>>> mol = MultiMolecule.from_xyz(xyz_file)
>>> rdf: pd.DataFrame = mol.init_rdf(atom_subset=atom_subset)
>>> param: pd.DataFrame = estimate_lennard_jones(rdf)
>>> print(param)
sigma (Angstrom) epsilon (kj/mol)
Atom pairs
Cd Cd 3.95 2.097554
Cd Se 2.50 4.759017
Cd O 2.20 3.360966
Se Se 4.20 2.976106
Se O 3.65 0.992538
O O 2.15 6.676584
Index¶
|
Estimate the Lennard-Jones \(\sigma\) and \(\varepsilon\) parameters using an RDF. |
|
Convert a distribution function into a free energy function. |
API¶
- FOX.ff.lj_param.estimate_lj(rdf, temperature=298.15, sigma_estimate='base')[source]¶
Estimate the Lennard-Jones \(\sigma\) and \(\varepsilon\) parameters using an RDF.
Given a radius \(r\), the Lennard-Jones potential \(V_{LJ}(r)\) is defined as following:
\[V_{LJ}(r) = 4 \varepsilon \left( \left( \frac{\sigma}{r} \right )^{12} - \left( \frac{\sigma}{r} \right )^6 \right )\]The \(\sigma\) and \(\varepsilon\) parameters are estimated as following:
\(\sigma\): The radii at which the first inflection point or peak base occurs in rdf.
\(\varepsilon\): The minimum value in of the rdf ree energy multiplied by \(-1\).
All values are calculated per atom pair specified in rdf.
- Parameters:
rdf (
pandas.DataFrame
) – A radial distribution function. The columns should consist of atom-pairs.temperature (
float
) – The temperature in Kelvin.sigma_estimate (
str
) – Whether \(\sigma\) should be estimated based on the base of the first peak or its inflection point. Accepted values are"base"
and"inflection"
, respectively.
- Returns:
A Pandas DataFrame with two columns,
"sigma"
(Angstrom) and"epsilon"
(kcal/mol), holding the Lennard-Jones parameters. Atom-pairs from rdf are used as index.- Return type:
See also
MultiMolecule.init_rdf()
Initialize the calculation of radial distribution functions (RDFs).
get_free_energy()
Convert a distribution function into a free energy function.
- FOX.ff.lj_param.get_free_energy(distribution, temperature=298.15, unit='kcal/mol', inf_replace=nan)[source]¶
Convert a distribution function into a free energy function.
Given a distribution function \(g(r)\), the free energy \(F(g(r))\) can be retrieved using a Boltzmann inversion:
\[F(g(r)) = -RT * \text{ln} (g(r))\]Two examples of valid distribution functions would be the radial- and angular distribution functions.
- Parameters:
distribution (array-like) – A distribution function (e.g. an RDF) as an array-like object.
temperature (
float
) – The temperature in Kelvin.inf_replace (
float
, optional) – A value used for replacing all instances of infinity (np.inf
).unit (
str
) – The to-be returned unit. See scm.plams.Units for a comprehensive overview of all allowed values.
- Returns:
An array-like object with a free-energy function (kj/mol) of distribution.
- Return type:
See also
MultiMolecule.init_rdf()
Initialize the calculation of radial distribution functions (RDFs).
MultiMolecule.init_adf()
Initialize the calculation of distance-weighted angular distribution functions (ADFs).
PSFContainer¶
A class for reading protein structure (.psf) files.
Index¶
|
A container for managing protein structure files. |
API¶
- class FOX.PSFContainer(filename=None, title=None, atoms=None, bonds=None, angles=None, dihedrals=None, impropers=None, donors=None, acceptors=None, no_nonbonded=None)[source]
A container for managing protein structure files.
The
PSFContainer
class has access to three general sets of methods.Methods for reading & constructing .psf files:
PSFContainer.read()
PSFContainer.write()
Methods for updating atom types:
PSFContainer.update_atom_charge()
PSFContainer.update_atom_type()
Methods for extracting bond, angle and dihedral-pairs from
plams.Molecule
instances:PSFContainer.generate_bonds()
PSFContainer.generate_angles()
PSFContainer.generate_dihedrals()
PSFContainer.generate_impropers()
PSFContainer.generate_atoms()
- filename
A 1D array with a single string as filename.
- Type:
\(1\)
numpy.ndarray
[str
]
- title
A 1D array of strings holding the title block.
- Type:
\(n\)
numpy.ndarray
[str
]
- atoms
A Pandas DataFrame holding the atoms block. The DataFrame should possess the following collumn keys:
"segment name"
"residue ID"
"residue name"
"atom name"
"atom type"
"charge"
"mass"
"0"
- Type:
\(n*8\)
pandas.DataFrame
- bonds
A 2D array holding the indices of all atom-pairs defining bonds. Indices are expected to be 1-based.
- Type:
\(n*2\)
numpy.ndarray
[int
]
- angles
A 2D array holding the indices of all atom-triplets defining angles. Indices are expected to be 1-based.
- Type:
\(n*3\)
numpy.ndarray
[int
]
- dihedrals
A 2D array holding the indices of all atom-quartets defining proper dihedral angles. Indices are expected to be 1-based.
- Type:
\(n*4\)
numpy.ndarray
[int
]
- impropers
A 2D array holding the indices of all atom-quartets defining improper dihedral angles. Indices are expected to be 1-based.
- Type:
\(n*4\)
numpy.ndarray
[int
]
- donors
A 2D array holding the atomic indices of all hydrogen-bond donors. Indices are expected to be 1-based.
- Type:
\(n*1\)
numpy.ndarray
[int
]
- acceptors
A 2D array holding the atomic indices of all hydrogen-bond acceptors. Indices are expected to be 1-based.
- Type:
\(n*1\)
numpy.ndarray
[int
]
- no_nonbonded
A 2D array holding the indices of all atom-pairs whose nonbonded interactions should be ignored. Indices are expected to be 1-based.
- Type:
\(n*2\)
numpy.ndarray
[int
]
- np_printoptions
A mapping with Numpy print options. See np.set_printoptions.
- pd_printoptions
A mapping with Pandas print options. See Options and settings.
- as_dict(return_private=False)[source]
Construct a dictionary from this instance with all non-private instance variables.
The returned dictionary values are shallow copies.
- Parameters:
return_private (
bool
) – IfTrue
, return both public and private instance variables. Private instance variables are defined inPSFContainer._PRIVATE_ATTR
.- Returns:
A dictionary with keyword arguments for initializing a new instance of this class.
- Return type:
See also
PSFContainer.from_dict()
Construct a instance of this objects’ class from a dictionary with keyword arguments.
PSFContainer._PRIVATE_ATTR
A set with the names of private instance variables.
- copy(deep=True)[source]
Return a shallow or deep copy of this instance.
- Parameters:
deep (
bool
) – Whether or not to return a deep or shallow copy.- Returns:
A new instance constructed from this instance.
- Return type:
PSFContainer
- property filename
Get
PSFContainer.filename
as string or assign an array-like object as a 1D array.
- property title
Get
PSFContainer.title
or assign an array-like object as a 1D array.
- property atoms
Get
PSFContainer.atoms
or assign an a DataFrame.
- property bonds
Get
PSFContainer.bonds
or assign an array-like object as a 2D array.
- property angles
Get
PSFContainer.angles
or assign an array-like object as a 2D array.
- property dihedrals
Get
PSFContainer.dihedrals
or assign an array-like object as a 2D array.
- property impropers
Get
PSFPSFContainerimpropers
or assign an array-like object as a 2D array.
- property donors
Get
PSFContainer.donors
or assign an array-like object as a 2D array.
- property acceptors
Get
PSFContainer.acceptors
or assign an array-like object as a 2D array.
- property no_nonbonded
Get
PSFContainer.no_nonbonded
or assign an array-like object as a 2D array.
- property segment_name
Get or set the
"segment name"
column inPSFContainer.atoms
.
- property residue_id
Get or set the
"residue ID"
column inPSFContainer.atoms
.
- property residue_name
Get or set the
"residue name"
column inPSFContainer.atoms
.
- property atom_name
Get or set the
"atom name"
column inPSFContainer.atoms
.
- property atom_type
Get or set the
"atom type"
column inPSFContainer.atoms
.
- property charge
Get or set the
"charge"
column inPSFContainer.atoms
.
- property mass
Get or set the
"mass"
column inPSFContainer.atoms
.
- update_atom_charge(atom_type, charge)[source]
Change the charge of atom_type to charge.
- Parameters:
- Raises:
ValueError – Raised if charge cannot be converted into a
float
.
- update_atom_type(atom_type_old, atom_type_new)[source]
Change the atom type of a atom_type_old to atom_type_new.
- generate_bonds(mol=None, *, segment_dict=None)[source]
Update
PSFContainer.bonds
with the indices of all bond-forming atoms from mol.Notes
The mol and segment_dict parameters are mutually exclusive.
Examples
>>> from FOX import PSFContainer >>> from scm.plams import Molecule >>> psf = PSFContainer(...) >>> segment_dict = {"MOL3": Molecule(...)} >>> psf.generate_bonds(segment_dict=segment_dict)
- Parameters:
mol (
plams.Molecule
) – A PLAMS Molecule.segment_dict (
Mapping[str, plams.Molecule]
) – A dictionary mapping segment names to individual ligands. This can result in dramatic speed ups for systems wherein each segment contains a large number of residues.
- generate_angles(mol=None, *, segment_dict=None)[source]
Update
PSFContainer.angles
with the indices of all angle-defining atoms from mol.Notes
The mol and segment_dict parameters are mutually exclusive.
- Parameters:
mol (
plams.Molecule
) – A PLAMS Molecule.segment_dict (
Mapping[str, plams.Molecule]
) – A dictionary mapping segment names to individual ligands. This can result in dramatic speed ups for systems wherein each segment contains a large number of residues.
- generate_dihedrals(mol=None, *, segment_dict=None)[source]
Update
PSFContainer.dihedrals
with the indices of all proper dihedral angle-defining atoms from mol.Notes
The mol and segment_dict parameters are mutually exclusive.
- Parameters:
mol (
plams.Molecule
) – A PLAMS Molecule.segment_dict (
Mapping[str, plams.Molecule]
) – A dictionary mapping segment names to individual ligands. This can result in dramatic speed ups for systems wherein each segment contains a large number of residues.
- generate_impropers(mol=None, *, segment_dict=None)[source]
Update
PSFContainer.impropers
with the indices of all improper dihedral angle-defining atoms from mol.Notes
The mol and segment_dict parameters are mutually exclusive.
- Parameters:
mol (
plams.Molecule
) – A PLAMS Molecule.segment_dict (
Mapping[str, plams.Molecule]
) – A dictionary mapping segment names to individual ligands. This can result in dramatic speed ups for systems wherein each segment contains a large number of residues.
- generate_atoms(mol, id_map=None)[source]
Update
PSFContainer.atoms
with the all properties from mol.DataFrame keys in
PSFContainer.atoms
are set based on the following values in mol:DataFrame column
Value
Backup value(s)
"segment name"
"MOL{:d}"
; See"atom type"
and"residue name"
"residue ID"
Atom.properties
["pdb_info"]["ResidueNumber"]
1
"residue name"
Atom.properties
["pdb_info"]["ResidueName"]
"COR"
"atom name"
"atom type"
Atom.properties
["symbol"]
"charge"
Atom.properties
["charge_float"]
Atom.properties
["charge"]
&0.0
"mass"
"0"
0
If a value is not available in a particular
Atom.properties
instance then a backup value will be set.- Parameters:
mol (
plams.Molecule
) – A PLAMS Molecule.id_map (
Mapping[int, Any]
, optional) – A mapping of ligand residue ID’s to a custom (Hashable) descriptor. Can be used for generating residue names for quantum dots with multiple different ligands.
- to_atom_dict()[source]
Create a dictionary of atom types and lists with their respective indices.
- Returns:
A dictionary with atom types as keys and lists of matching atomic indices as values. The indices are 0-based.
- Return type:
- validate_mol(mol)[source]
Check whether the atomic symbols in the passed molecule match the psf.
- Raises:
plams.MoleculeError – Raised if there’s either an atom count- or type-mismatch
- to_atom_alias_dict()[source]
Create a with atom aliases.
- write_pdb(mol, pdb_file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, copy_mol=True)[source]
Construct a .pdb file from this instance and mol.
Note
Requires the optional RDKit package.
- Parameters:
mol (
plams.Molecule
) – A PLAMS Molecule.copy_mol (
bool
) – IfTrue
, create a copy of mol instead of modifying it inplace.pdb_file (
str
otIO[str]
) – A filename or a file-like object.
- sort_values(by, *, return_argsort=False, inplace=False, **kwargs)[source]
Sort the
atoms
values by the specified columns.Examples
>>> from FOX import PSFContainer >>> psf: PSFContainer = ... >>> print(psf) PSFContainer( acceptors = array([], shape=(0, 1), dtype=int64), angles = array([], shape=(0, 3), dtype=int64), atoms = segment name residue ID residue name atom name atom type charge mass 0 1 MOL1 1 COR Cd Cd 0.0 112.41400 0 2 MOL1 1 COR Cd Cd 0.0 112.41400 0 3 MOL1 1 COR Cd Cd 0.0 112.41400 0 4 MOL1 1 COR Cd Cd 0.0 112.41400 0 5 MOL1 1 COR Cd Cd 0.0 112.41400 0 .. ... ... ... ... ... ... ... .. 223 MOL3 26 LIG O O 0.0 15.99940 0 224 MOL3 27 LIG C C 0.0 12.01060 0 225 MOL3 27 LIG H H 0.0 1.00798 0 226 MOL3 27 LIG O O 0.0 15.99940 0 227 MOL3 27 LIG O O 0.0 15.99940 0 [227 rows x 8 columns], bonds = array([[124, 125], [126, 124], [127, 124], [128, 129], [130, 128], ..., [222, 220], [223, 220], [224, 225], [226, 224], [227, 224]], dtype=int64), dihedrals = array([], shape=(0, 4), dtype=int64), donors = array([], shape=(0, 1), dtype=int64), filename = array([], dtype='<U1'), impropers = array([], shape=(0, 4), dtype=int64), no_nonbonded = array([], shape=(0, 2), dtype=int64), title = array(['PSF file generated with Auto-FOX', 'https://github.com/nlesc-nano/Auto-FOX'], dtype='<U38') ) >>> psf.sort_values(["residue ID", "mass"]) PSFContainer( acceptors = array([], shape=(0, 1), dtype=int64), angles = array([], shape=(0, 3), dtype=int64), atoms = segment name residue ID residue name atom name atom type charge mass 0 1 MOL2 1 COR Se Se 0.0 78.97100 0 2 MOL2 1 COR Se Se 0.0 78.97100 0 3 MOL2 1 COR Se Se 0.0 78.97100 0 4 MOL2 1 COR Se Se 0.0 78.97100 0 5 MOL2 1 COR Se Se 0.0 78.97100 0 .. ... ... ... ... ... ... ... .. 223 MOL3 26 LIG O O 0.0 15.99940 0 224 MOL3 27 LIG H H 0.0 1.00798 0 225 MOL3 27 LIG C C 0.0 12.01060 0 226 MOL3 27 LIG O O 0.0 15.99940 0 227 MOL3 27 LIG O O 0.0 15.99940 0 [227 rows x 8 columns], bonds = array([[141, 139], [138, 141], [136, 141], [137, 135], [134, 137], ..., [164, 167], [165, 167], [163, 162], [160, 163], [161, 163]], dtype=int64), dihedrals = array([], shape=(0, 4), dtype=int64), donors = array([], shape=(0, 1), dtype=int64), filename = array([], dtype='<U1'), impropers = array([], shape=(0, 4), dtype=int64), no_nonbonded = array([], shape=(0, 2), dtype=int64), title = array(['PSF file generated with Auto-FOX', 'https://github.com/nlesc-nano/Auto-FOX'], dtype='<U38') ) >>> from scm.plams import Molecule # Sort the molecule in the same order as `psf` >>> mol: Molecule = .... >>> psf_new, argsort = psf.sort_values(["residue ID", "mass"], return_argsort=True) >>> mol.atoms = [mol.atoms[i] for i in argsort]
- Parameters:
by (
str
orSequence[str]
) – One or more strings with the names of columns.return_argsort (
bool
) – IfTrue
, also return the array of indices that sorts the dataframe.**kwargs (
Any
) – Further keyword arguments for . Note thataxis
andignore_index
are not supported. Secondly,inplace=True
will always returnself
.
See also
pd.DataFrame.sort_values
Sort by the values along either axis.
PRMContainer¶
A class for reading and generating .prm parameter files.
Index¶
|
A class for managing prm files. |
|
Construct a new instance from this object's class by reading the content of file. |
|
Write the content of this instance to file. |
|
Update a set of parameters, prm_name, with those provided in param_df. |
|
Extract forcefield information from PLAMS-style CP2K settings. |
|
Concatenate multiple PRMContainers into a single instance. |
API¶
- class FOX.PRMContainer(atoms=None, bonds=None, angles=None, dihedrals=None, impropers=None, nbfix=None, hbond=None, nonbonded_header=None, nonbonded=None, improper=None)[source]
A class for managing prm files.
Examples
>>> from FOX import PRMContainer >>> input_file = str(...) >>> output_file = str(...) >>> prm = PRMContainer.read(input_file) >>> prm.write(output_file)
- impropers
A dataframe holding improper diehdral-related parameters.
- atoms
A dataframe holding atomic parameters.
- bonds
A dataframe holding bond-related parameters.
- angles
A dataframe holding angle-related parameters.
- dihedrals
A dataframe holding proper dihedral-related parameters.
- nonbonded
A dataframe holding non-bonded atomic parameters.
- nbfix
A dataframe holding non-bonded pair-wise atomic parameters.
- classmethod PRMContainer.read(file, bytes_decoding=None, **kwargs)¶
Construct a new instance from this object’s class by reading the content of file.
- Parameters:
file (
str
,bytes
,os.PathLike
orIO
) – A path- or file-like object.bytes_decoding (
str
, optional) – The type of encoding to use when reading from file when it will be/is be opened inbytes
mode. This value should be left empty otherwise.**kwargs (
Any
) – Further keyword arguments foropen()
. Only relevant if file is a path-like object.
- Returns:
A new instance constructed from file.
- Return type:
nanoutils.AbstractFileContainer
- PRMContainer.write(file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, bytes_encoding=None, **kwargs)¶
Write the content of this instance to file.
- Parameters:
file (
str
,bytes
,os.PathLike
orIO
) –A path- or file-like object. Defaults to
sys.stdout
if not specified.bytes_encoding (
str
, optional) – The type of encoding to use when writing to file when it will be/is be opened inbytes
mode. This value should be left empty otherwise.**kwargs (
Any
) – Further keyword arguments foropen()
. Only relevant if file is a path-like object.
- Return type:
- PRMContainer.overlay_mapping(prm_name, param, units=None)[source]¶
Update a set of parameters, prm_name, with those provided in param_df.
Examples
>>> from FOX import PRMContainer >>> prm = PRMContainer(...) >>> param_dict = {} >>> param_dict['epsilon'] = {'Cd Cd': ..., 'Cd Se': ..., 'Se Se': ...} # epsilon >>> param_dict['sigma'] = {'Cd Cd': ..., 'Cd Se': ..., 'Se Se': ...} # sigma >>> units = ('kcal/mol', 'angstrom') # input units for epsilon and sigma >>> prm.overlay_mapping('nonbonded', param_dict, units=units)
- Parameters:
prm_name (
str
) – The name of the parameter of interest. See the keys ofPRMContainer.CP2K_TO_PRM
for accepted values.param (
pandas.DataFrame
or nestedMapping
) – A DataFrame or nested mapping with the to-be added parameters. The keys should be a subset ofPRMContainer.CP2K_TO_PRM[prm_name]["columns"]
. If the index/nested sub-keys consist of strings then they’ll be split and turned into apandas.MultiIndex
. Note that the resulting values are not sorted.units (
Iterable[str]
, optional) – An iterable with the input units of each column in param_df. IfNone
, default to the defaults specified inPRMContainer.CP2K_TO_PRM[prm_name]["unit"]
.
- PRMContainer.overlay_cp2k_settings(cp2k_settings)[source]¶
Extract forcefield information from PLAMS-style CP2K settings.
Performs an inplace update of this instance.
Examples
Example input value for cp2k_settings. In the provided example the cp2k_settings are directly extracted from a CP2K .inp file.
>>> import cp2kparser # https://github.com/nlesc-nano/CP2K-Parser >>> filename = str(...) >>> cp2k_settings: dict = cp2kparser.read_input(filename) >>> print(cp2k_settings) {'force_eval': {'mm': {'forcefield': {'nonbonded': {'lennard-jones': [...]}}}}}
- Parameters:
cp2k_settings (
Mapping
) – A Mapping with PLAMS-style CP2K settings.
RTFContainer¶
A class for reading and CHARMM .rtf topology files.
Index¶
|
A class for managing CHARMM .rtf topology files. |
Return a dictionary mapping atom types to atomic charges. |
|
Convert all statements in |
|
|
Construct a new |
|
Concatenate multiple RTFContainers into a single instance. |
API¶
- class FOX.RTFContainer(mass, atom, bond, impr, angles, dihe, charmm_version=(0, 0), auto=None)[source]
A class for managing CHARMM .rtf topology files.
Examples
>>> from FOX import RTFContainer >>> input_file = str(...) >>> rtf = RTFContainer.from_file(input_file)
- mass
A dataframe holding all MASS-related info.
- atom
A dataframe holding all ATOM-related info.
- bond
A dataframe holding all BOND-related info.
- property impropers
A dataframe holding all IMPR-related info.
- angles
A dataframe holding all ANGLES-related info.
- property dihedrals
A dataframe holding all DIHE-related info.
- charmm_version
The CHARMM version used for generating the .rtf file
- auto
A set with all .rtf statements that should be auto-generated.
TOPContainer¶
A class for reading and GROMACS .top topology files.
Index¶
|
A class for managing GROMACS .top topology files. |
|
Construct a new |
|
Construct a new .top file from this instance. |
|
Return whether two TOPContainers are equivalent within a given tolerance. |
|
Construct and populate the |
|
Construct and populate the |
|
Return a copy of this instance. |
Namespace with functions for adding new directive-specific rows. |
API¶
- class FOX.TOPContainer(*, defaults=None, atomtypes=None, moleculetype=None, atoms=None, system=None, molecules=None, bondtypes=None, pairtypes=None, angletypes=None, dihedraltypes=None, constrainttypes=None, nonbond_params=None, pairs=None, pairs_nb=None, bonds=None, angles=None, dihedrals=None)[source]
A class for managing GROMACS .top topology files.
Examples
>>> from FOX import TOPContainer >>> input_file: str = ... >>> output_file: str = ... >>> top = TOPContainer.from_file(input_file) >>> top.to_file(output_file)
- DF_DTYPES = mappingproxy({'defaults': dtype([('nbfunc', '<i8'), ('comb_rule', '<i8'), ('gen_pairs', '<U3'), ('fudgeLJ', '<f8'), ('fudgeQQ', '<f8')]), 'atomtypes': dtype([('atom_type', '<U5'), ('atnum', '<i8'), ('mass', '<f8'), ('charge', '<f8'), ('particle_type', '<U1'), ('sigma', '<f8'), ('epsilon', '<f8')]), 'moleculetype': dtype([('molecule', 'O'), ('n_rexcl', '<i8')]), 'atoms': dtype([('molecule', 'O'), ('atom1', '<i8'), ('atom_type', '<U5'), ('res_num', '<i8'), ('res_name', '<U5'), ('atom_name', '<U5'), ('charge_group', '<i8'), ('charge', '<f8'), ('mass', '<f8')]), 'system': dtype([('name', 'O')]), 'molecules': dtype([('molecule', 'O'), ('n_mol', '<i8')]), 'bonds': dtype([('molecule', 'O'), ('atom1', '<i8'), ('atom2', '<i8'), ('func', '<i8')]), 'angles': dtype([('molecule', 'O'), ('atom1', '<i8'), ('atom2', '<i8'), ('atom3', '<i8'), ('func', '<i8')]), 'dihedrals': dtype([('molecule', 'O'), ('atom1', '<i8'), ('atom2', '<i8'), ('atom3', '<i8'), ('atom4', '<i8'), ('func', '<i8')]), 'pairs': dtype([('molecule', 'O'), ('atom1', '<i8'), ('atom2', '<i8'), ('func', '<i8')]), 'pairs_nb': dtype([('molecule', 'O'), ('atom1', '<i8'), ('atom2', '<i8'), ('func', '<i8')])})
A mapping holding the data types of all mandatory directives.
- DF_DICT_DTYPES = mappingproxy({'pairtypes': mappingproxy({1: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8'), ('sigma', '<f8'), ('epsilon', '<f8')]), 2: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8'), ('fudgeQQ', '<f8'), ('qi', '<f8'), ('qj', '<f8'), ('sigma', '<f8'), ('epsilon', '<f8')])}), 'bondtypes': mappingproxy({1: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8'), ('b0', '<f8'), ('k', '<f8')]), 2: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8'), ('b0', '<f8'), ('k', '<f8')]), 3: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8'), ('b0', '<f8'), ('D', '<f8'), ('beta', '<f8')]), 4: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8'), ('b0', '<f8'), ('C', '<f8')]), 5: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8')]), 6: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8'), ('b0', '<f8'), ('k', '<f8')]), 7: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8'), ('b0', '<f8'), ('k', '<f8')]), 8: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8'), ('table_num', '<i8'), ('k', '<f8')]), 9: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8'), ('table_num', '<i8'), ('k', '<f8')]), 10: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8'), ('low', '<f8'), ('up', '<f8'), ('k', '<f8')])}), 'angletypes': mappingproxy({1: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('func', '<i8'), ('theta', '<f8'), ('k', '<f8')]), 2: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('func', '<i8'), ('theta', '<f8'), ('k', '<f8')]), 3: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('func', '<i8'), ('r1', '<f8'), ('r2', '<f8'), ('k', '<f8')]), 4: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('func', '<i8'), ('r1', '<f8'), ('r2', '<f8'), ('r3', '<f8'), ('k', '<f8')]), 5: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('func', '<i8'), ('theta', '<f8'), ('ktheta', '<f8'), ('ub0', '<f8'), ('kub', '<f8')]), 6: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('func', '<i8'), ('theta', '<f8'), ('C', '<f8')]), 8: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('func', '<i8'), ('table_num', '<i8'), ('k', '<f8')]), 9: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('func', '<i8'), ('a', '<f8'), ('k', '<f8')]), 10: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('func', '<i8'), ('theta', '<f8'), ('k', '<f8')])}), 'dihedraltypes': mappingproxy({1: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('atom4', '<U5'), ('func', '<i8'), ('phi0', '<f8'), ('k', '<f8'), ('n', '<i8')]), 2: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('atom4', '<U5'), ('func', '<i8'), ('xi0', '<f8'), ('k', '<f8')]), 3: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('atom4', '<U5'), ('func', '<i8'), ('C0', '<f8'), ('C1', '<f8'), ('C2', '<f8'), ('C3', '<f8'), ('C4', '<f8'), ('C5', '<f8')]), 4: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('atom4', '<U5'), ('func', '<i8'), ('phi0', '<f8'), ('k', '<f8'), ('n', '<i8')]), 5: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('atom4', '<U5'), ('func', '<i8'), ('C1', '<f8'), ('C2', '<f8'), ('C3', '<f8'), ('C4', '<f8'), ('C5', '<f8')]), 8: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('atom4', '<U5'), ('func', '<i8'), ('table_num', '<i8'), ('k', '<f8')]), 9: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('atom4', '<U5'), ('func', '<i8'), ('phi0', '<f8'), ('k', '<f8'), ('n', '<i8')]), 10: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('atom4', '<U5'), ('func', '<i8'), ('phi0', '<f8'), ('k', '<f8')]), 11: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('atom3', '<U5'), ('atom4', '<U5'), ('func', '<i8'), ('k', '<f8'), ('a0', '<f8'), ('a1', '<f8'), ('a2', '<f8'), ('a3', '<f8')])}), 'constrainttypes': mappingproxy({1: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8')]), 2: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8')])}), 'nonbond_params': mappingproxy({1: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8'), ('sigma', '<f8'), ('epsilon', '<f8')]), 2: dtype([('atom1', '<U5'), ('atom2', '<U5'), ('func', '<i8'), ('a', '<f8'), ('b', '<f8'), ('c', '<f8')])})})
A mapping holding the data types of all optional (dictionary of dataframe based) directives.
- defaults
A dataframe holding the
defaults
directive.
- atomtypes
A dataframe holding the
atomtypes
directive.
- bondtypes
A dictionary of dataframes holding the
bondtypes
directive.
- pairtypes
A dictionary of dataframes holding the
pairtypes
directive.
- angletypes
A dictionary of dataframes holding the
angletypes
directive.
- dihedraltypes
A dictionary of dataframes holding the
dihedraltypes
directive.
- constrainttypes
A dictionary of dataframes holding the
constrainttypes
directive.
- nonbond_params
A dictionary of dataframes holding the
nonbond_params
directive.
- moleculetype
A dataframe holding the
moleculetype
directive.
- atoms
A dataframe holding the
atoms
directive.
- pairs
A dataframe holding the
pairs
directive.
- bonds
A dataframe holding the
bonds
directive.
- angles
A dataframe holding the
angles
directive.
- dihedrals
A dataframe holding the
dihedrals
directive.
- system
A dataframe holding the
system
directive.
- molecules
A dataframe holding the
molecules
directive.
- classmethod TOPContainer.from_file(path)[source]¶
Construct a new
TOPContainer
from the passed file path.- Parameters:
path (path-like object) – The path to the .top file
- Returns:
A newly constructed .top container
- Return type:
FOX.TOPContainer
- TOPContainer.to_file(path)[source]¶
Construct a new .top file from this instance.
- Parameters:
path (path-like object) – The path of the to-be created .top file
- TOPContainer.allclose(other, *, rtol=1e-05, atol=1e-08, equal_nan=True)[source]¶
Return whether two TOPContainers are equivalent within a given tolerance.
- Parameters:
other (TOPContainer) – The to-be compared TOPContainer
rtol (float) – The relative tolerance parameter (see Notes).
atol (float) – The absolute tolerance parameter (see Notes).
equal_nan (bool) – Whether to compare NaN’s as equal. If True, NaN’s in a will be considered equal to NaN’s in b in the output array.
- Returns:
Whether the two containers are equivalent within a given tolerance.
- Return type:
See also
numpy.allclose()
Returns True if two arrays are element-wise equal within a tolerance.
- TOPContainer.generate_pairs(func=1)[source]¶
Construct and populate the
pairs
directive with explicit 1,4-pairs based on the available bonds.- Parameters:
func ({1, 2}) – The func type as used for the new pairs.
- TOPContainer.generate_pairs_nb(func=1)[source]¶
Construct and populate the
pairs_nb
directive with explicit nonbonded pairs based on the available non-bonded atoms.- Parameters:
func ({1}) – The func type as used for the new pairs.
- TOPContainer.copy(deep=True)[source]¶
Return a copy of this instance.
- Parameters:
deep (bool) – Whether a deep copy should be created or not
- Return type:
A copy of this instance
- TOPContainer.concatenate¶
Namespace with functions for adding new directive-specific rows.
- atomtypes(self, *, atnum=None, symbol=None, atom_type=None, charge=0.0, sigma=0.0, epsilon=0.0, particle_type='A')¶
Add one or more atom types to the
atomtypes
directive.Examples
>>> import FOX >>> top: FOX.TOPContainer = ... >>> top.concatenate.atomtypes(atnum=[6, 6, 7], sigma: [1.5, 1.2, 5.0], charge=0)
- Parameters:
atnum/symbol (array-like) – One or more atomic numbers _or_ atomic symbols
atom_type (array-like) – One or more atom types. If not provided use normal atomic symbols instead
charge (array-like) – One or more atomic charges
sigma (array-like) – One or more Lennard-Jones sigma values
epsilon (array-like) – One or more Lennard-Jones epsilon values
particle_type ({"A", "S", "V", "D"}) – One or more particule types
- FOX.io._top_concat._TOPConcat.nonbond_params(self, atom1, atom2, *, func, **kwargs)¶
Add one or more atom types to the
nonbond_params
directive.Examples
>>> import FOX >>> top: FOX.TOPContainer = ... >>> top.concatenate.nonbond_params( ... ["C12", "C12"], ["C12", "H33"], func=1, epsilon=1.0, sigma=0.5 ... )
- Parameters:
atom1 (array-like) – One or more atom types for the first atom defining the bond
atom2 (array-like) – One or more atom types for the second atom defining the bond
func ({1, 2}) – The type of potential function for the non-bonded potential, 1 representing Lennard-Jones and 2 Buckingham
**kwargs (array-like) – Func-specific extra (optional) arguments: * 1:
sigma
andepsilon
* 2:a
,b
andc
- FOX.io._top_concat._TOPConcat.atoms(self, atom_type, molecule, *, res_num, res_name, atom1=None, atom_name=None, charge_group=None)¶
Add one or more atom types to the
atoms
directive.Examples
>>> import FOX >>> top: FOX.TOPContainer = ... >>> top.concatenate.atoms( ... molecule="mol1", res_num=5, res_name="OLA", ... atom_type=["C12", "C12", "C13", "O38"], ... )
- Parameters:
molecule (array-like) – One or more molecule names; must be present in the
moleculetype
directiveres_num (array-like) – One or more residue numbers
res_name (array-like) – One or more residue names
atom_type (array-like) – One or more atom types
atom1 (Array-like) – One or more atomic indices for the new atoms. Automatically inferred if unspecified.
atom_name (array-like) – One or more atom names. Defaults to the same values as
atom_type
if unspecified.charge_group (array-like) – One or more charge groups. Defaults to the atomic index of unspecified.
- FOX.io._top_concat._TOPConcat.pairs(self, atom1, atom2, molecule, *, func)¶
Add one or more atom types to the
pairs
directive.Examples
>>> import FOX >>> top: FOX.TOPContainer = ... >>> top.concatenate.pairs([1, 2, 3], [2, 3, 1], func=1)
- Parameters:
molecule (array-like) – One or more molecule names; must be present in the
moleculetype
directiveatom1 (array-like) – One or more atomic indices for the first atom defining the bond
atom2 (array-like) – One or more atomic indices for the second atom defining the bond
func ({1, 2}) – The type of potential function for the non-bonded potential, 1 representing Lennard-Jones and 2 Buckingham
- FOX.io._top_concat._TOPConcat.pairs_nb(self, atom1, atom2, molecule, *, func=1)¶
Add one or more atom types to the
pairs_nb
directive.Examples
>>> import FOX >>> top: FOX.TOPContainer = ... >>> top.concatenate.pairs_nb([1, 2, 3], [2, 3, 1], func=1)
- Parameters:
molecule (array-like) – One or more molecule names; must be present in the
moleculetype
directiveatom1 (array-like) – One or more atomic indices for the first atom defining the bond
atom2 (array-like) – One or more atomic indices for the second atom defining the bond
func ({1}) – The type of potential function for the non-bonded potential, 1 representing Lennard-Jones
Properties¶
Functions for calculating/extracting various properties.
Each function can be used to calculate the respective property as is,
or to extract it from a passed qmflows.Result
instance.
>>> from FOX.properties import get_bulk_modulus
>>> from qmflows.packages import Result
>>> import numpy as np
>>> # Calculate the bulk modulus from a set of arrays
>>> pressure: np.ndarray = ...
>>> volume: np.ndarray = ...
>>> get_bulk_modulus(pressure, volume)
array([[[ 0., 1., 2.],
[ 3., 4., 5.]],
[[ 6., 7., 8.],
[ 9., 10., 11.]]])
>>> # Calculate the bulk modulus from a qmflows.Result instance
>>> result: Result = ...
>>> get_bulk_modulus.from_result(result)
array([[[ 0., 1., 2.],
[ 3., 4., 5.]],
[[ 6., 7., 8.],
[ 9., 10., 11.]]])
An example for how get_bulk_modulus()
can be used in conjunction
with the ARMC yaml input.
Note that additional CP2K print
keys are required in order for it
to export the necessary properties.
job:
type: FOX.armc.PackageManager
molecule: mol.xyz
md:
template: qmflows.md.specific.cp2k_mm
settings:
cell_parameters: [50, 50, 50]
input:
motion:
print:
cell on:
filename: ''
forces on:
filename: ''
md:
ensemble: NVE
thermostat:
print:
temperature on:
filename: ''
pes:
bulk_modulus:
func: FOX.properties.get_bulk_modulus.from_result
ref: [1.0]
kwargs:
reduce: mean
Index¶
|
Calculate the pressure from the passed forces. |
|
Calculate the bulk modulus via differentiation of pressure w.r.t. volume. |
|
|
|
Call the name method of obj. |
|
A class for wrapping |
API¶
- FOX.properties.get_pressure(forces, coords, volume, temp=298.15, *, forces_unit='ha/bohr', coords_unit='bohr', volume_unit='bohr', return_unit='ha/bohr^3')[source]¶
Calculate the pressure from the passed forces.
\[P = \frac{Nk_{B}T}{V} + \frac{1}{6V} \sum_i^N \sum_j^N {\boldsymbol{r}_{ij} \cdot \boldsymbol{f}_{ij}}\]- Parameters:
forces (
np.ndarray[np.float64]
, shape \((n_{\text{mol}}, n_{\text{atom}}, 3)\)) – A 3D array containing the forces of all molecules within the trajectory.coords (
np.ndarray[np.float64]
, shape \((n_{\text{mol}}, n_{\text{atom}}, 3)\)) – A 3D array containing the coordinates of all molecules within the trajectory.volume (
np.ndarray[np.float64]
, shape \((n_{\text{mol}},)\)) – A 1D array containing the cell volumes across the trajectory.temp (
np.ndarray[np.float64]
, shape \((n_{\text{mol}},)\)) – A 1D array of the temperatures across the trajectory.forces_unit (
str
) – The unit of the forces.coords_unit (
str
) – The unit of the coords.volume_unit (
str
) – The unit of the volume. The passed unit will automatically cubed, e.g.Angstrom -> Angstrom**3
.return_unit (
str
) – The unit of the to-be returned pressure.
- Returns:
A 1D array with all pressures across the trajectory.
- Return type:
np.ndarray[np.float64]
, shape \((n_{\text{mol}},)\)
- get_pressure.from_result(result, *, reduce=None, axis=None, return_unit='ha/bohr^3', **kwargs)¶
Call
get_pressure()
using argument extracted from result.- Parameters:
result (
qmflows.CP2K_Result
) – The Result instance that self should operator on.reduce (
str
orCallable[[Any], Any]
, optional) – A callback for reducing the output of self. Alternativelly, one can provide on of the string aliases fromREDUCTION_NAMES
.axis (
int
orSequence[int]
, optional) – The axis along which the reduction should take place. IfNone
, use all axes.return_unit (
str
) – The unit of the to-be returned quantity.**kwargs (
Any
) – Further keyword arguments forget_pressure()
.
- Returns:
The output of
get_pressure()
.- Return type:
- FOX.properties.get_bulk_modulus(pressure, volume, *, pressure_unit='ha/bohr^3', volume_unit='bohr', return_unit='ha/bohr^3')[source]¶
Calculate the bulk modulus via differentiation of pressure w.r.t. volume.
\[B = -V * \frac{\delta P}{\delta V}\]- Parameters:
pressure (
np.ndarray[np.float64]
) – A 1D array of pressures used for defining \(\delta P\). Must be of equal length as volume.volume (
np.ndarray[np.float64]
) – A 1D array of volumes used for defining \(\delta V\). Must be of equal length as pressure.pressure_unit (
str
) – The unit of the pressure.volume_unit (
str
) – The unit of the volume. The passed unit will automatically cubed, e.g.Angstrom -> Angstrom**3
.return_unit (
str
) – The unit of the to-be returned pressure.
- Returns:
The bulk modulus \(B\). Returend as either a scalar or array, depending on the dimensionality volume_ref.
- Return type:
- get_bulk_modulus.from_result(result, *, reduce=None, axis=None, return_unit='ha/bohr^3', **kwargs)¶
Call
get_bulk_modulus()
using argument extracted from result.- Parameters:
result (
qmflows.CP2K_Result
) – The Result instance that self should operator on.reduce (
str
orCallable[[Any], Any]
, optional) – A callback for reducing the output of self. Alternativelly, one can provide on of the string aliases fromREDUCTION_NAMES
.axis (
int
orSequence[int]
, optional) – The axis along which the reduction should take place. IfNone
, use all axes.return_unit (
str
) – The unit of the to-be returned quantity.**kwargs (
Any
) – Further keyword arguments forget_bulk_modulus()
.
- Returns:
The output of
get_bulk_modulus()
.- Return type:
- FOX.properties.get_attr(obj, name, default=<null>, reduce=None, axis=None)[source]¶
gettattr()
with support for keyword argument.- Parameters:
obj (
object
) – The object in question.name (
str
) – The name of the to-be extracted attribute.default (
Any
) – An object that is to-be returned if obj does not have the name attribute.reduce (
str
orCallable[[Any], Any]
, optional) – A callback for reducing the extracted attribute. Alternativelly, one can provide on of the string aliases fromFromResult.REDUCTION_NAMES
.axis (
int
orSequence[int]
, optional) – The axis along which the reduction should take place. IfNone
, use all axes.
- Returns:
The extracted attribute.
- Return type:
Any
See also
getattr()
Get a named attribute from an object.
- FOX.properties.call_method(obj, name, *args, reduce=None, axis=None, **kwargs)[source]¶
Call the name method of obj.
- Parameters:
obj (
object
) – The object in question.name (
str
) – The name of the to-be extracted method.*args/**kwargs (
Any
) – Positional and/or keyword arguments for the (to-be called) extracted method.reduce (
str
orCallable[[Any], Any]
, optional) – A callback for reducing the output of the called function. Alternativelly, one can provide on of the string aliases fromFromResult.REDUCTION_NAMES
.axis (
int
orSequence[int]
, optional) – The axis along which the reduction should take place. IfNone
, use all axes.
- Returns:
The output of the extracted method.
- Return type:
Any
- class FOX.properties.FromResult(func, name, module=None, doc=None)[source]¶
A decorating class for wrapping
FunctionType
objects.Besides
__call__()
, instances have access to thefrom_result()
method, which is used for applying the wrapped callable to aqmflows.CP2K_Result
instance.- Parameters:
func (
types.FunctionType
) – The to-be wrapped function.result_func (
Callable
) – The function for reading the CP2KResult
object.
- REDUCTION_NAMES¶
A mapping that maps
from_result()
aliases to callbacks.In addition to the examples below, all reducable ufuncs from numpy and
scipy.special
are available.
Recipes¶
Various recipes implemented in Auto-FOX.
A set of functions for analyzing and plotting ARMC results. |
|
A set of functions for creating .psf files. |
|
A set of functions for analyzing ligands. |
|
A set of functions for calculating time-resolved distribution functions. |
|
Recipes for computing the similarity between trajectories. |
|
Recipe for creating GROMACS .top files from an .xyz and CHARMM .rtf and .str files. |
FOX.recipes.param¶
A set of functions for analyzing and plotting ARMC results.
Examples
A general overview of the functions within this module.
>>> import pandas as pd
>>> from FOX.recipes import get_best, overlay_descriptor, plot_descriptor
>>> hdf5_file: str = ...
>>> param: pd.Series = get_best(hdf5_file, name='param') # Extract the best parameters
>>> rdf: pd.DataFrame = get_best(hdf5_file, name='rdf') # Extract the matching RDF
# Compare the RDF to its reference RDF and plot
>>> rdf_dict = overlay_descriptor(hdf5_file, name='rdf')
>>> plot_descriptor(rdf_dict)

Examples
A small workflow for calculating for calculating free energies using distribution functions such as the radial distribution function (RDF).
>>> import pandas as pd
>>> from FOX import get_free_energy
>>> from FOX.recipes import get_best, overlay_descriptor, plot_descriptor
>>> hdf5_file: str = ...
>>> rdf: pd.DataFrame = get_best(hdf5_file, name='rdf')
>>> G: pd.DataFrame = get_free_energy(rdf, unit='kcal/mol')
>>> rdf_dict = overlay_descriptor(hdf5_file, name='rdf)
>>> G_dict = {key: get_free_energy(value) for key, value in rdf_dict.items()}
>>> plot_descriptor(G_dict)

Examples
A workflow for plotting parameters as a function of ARMC iterations.
>>> import numpy as np
>>> import pandas as pd
>>> from FOX import from_hdf5
>>> from FOX.recipes import plot_descriptor
>>> hdf5_file: str = ...
>>> param: pd.DataFrame = from_hdf5(hdf5_file, 'param')
>>> param.index.name = 'ARMC iteration'
>>> param_dict = {key: param[key] for key in param.columns.levels[0]}
>>> plot_descriptor(param_dict)

This approach can also be used for the plotting of other properties such as the auxiliary error.
>>> ...
>>> err: pd.DataFrame = from_hdf5(hdf5_file, 'aux_error')
>>> err.index.name = 'ARMC iteration'
>>> err_dict = {'Auxiliary Error': err}
>>> plot_descriptor(err_dict)

On occasion it might be desirable to only print the error of, for example, accepted iterations.
Given a sequence of booleans (bool_seq
), one can slice a DataFrame or Series (df
) using
df.loc[bool_seq]
.
>>> ...
>>> acceptance: np.ndarray = from_hdf5(hdf5_file, 'acceptance') # Boolean array
>>> err_slice_dict = {key: df.loc[acceptance], value for key, df in err_dict.items()}
>>> plot_descriptor(err_slice_dict)
Index¶
|
Return the PES descriptor or ARMC property which yields the lowest error. |
|
Return the PES descriptor which yields the lowest error and overlay it with the reference PES descriptor. |
|
Plot a DataFrame or iterable consisting of one or more DataFrames. |
API¶
- FOX.recipes.get_best(hdf5_file, name, i=0, sum_error=None, err_dset='aux_error')[source]¶
Return the PES descriptor or ARMC property which yields the lowest error.
- Parameters:
hdf5_file (
str
) – The path+filename of the ARMC .hdf5 file.name (
str
) – The name of the PES descriptor, e.g."rdf"
. Alternatively one can supply an ARMC property such as"acceptance"
,"param"
or"aux_error"
.i (
int
) – The index of the desired PES. Only relevant for PES-descriptors of state-averaged ARMCs.sum_error (
str
orlist[str]
, optional) – Sum all the given aux errors for a given iteration when determining an optimum. IfNone
, sum over all aux errors.err_dset (
str
) – The name of the dataset containing the errors. Generally speaking one should pick either"aux_error"
or"validation/aux_error"
.
- Returns:
A DataFrame of the optimal PES descriptor or other (user-specified) ARMC property.
- Return type:
pandas.DataFrame
orpd.Series
- FOX.recipes.overlay_descriptor(hdf5_file, name='rdf', i=0, err_dset='aux_error')[source]¶
Return the PES descriptor which yields the lowest error and overlay it with the reference PES descriptor.
- Parameters:
hdf5_file (
str
) – The path+filename of the ARMC .hdf5 file.name (
str
) – The name of the PES descriptor, e.g."rdf"
.i (
int
) – The index of desired PES. Only relevant for state-averaged ARMCs.err_dset (
str
) – The name of the dataset containing the errors. Generally speaking one should pick either"aux_error"
or"validation/aux_error"
.
- Returns:
A dictionary of DataFrames. Values consist of DataFrames with two keys:
"MM-MD"
and"QM-MD"
. Atom pairs, such as"Cd Cd"
, are used as keys.- Return type:
- FOX.recipes.plot_descriptor(descriptor, show_fig=True, kind='line', sharex=True, sharey=False, **kwargs)[source]¶
Plot a DataFrame or iterable consisting of one or more DataFrames.
Requires the matplotlib package.
- Parameters:
descriptor (
pandas.DataFrame
orIterable
[pandas.DataFrame
]) – A DataFrame or an iterable consisting of DataFrames.show_fig (
bool
) – Whether to show the figure or not.kind (
str
) – The plot kind to-be passed topandas.DataFrame.plot()
.sharex/sharey (
bool
) – Whether or not the to-be created plots should share their x/y-axes.**kwargs (
Any
) – Further keyword arguments for thepandas.DataFrame.plot()
method.
- Returns:
A matplotlib Figure.
- Return type:
See also
get_best()
Return the PES descriptor or ARMC property which yields the lowest error.
overlay_descriptor()
Return the PES descriptor which yields the lowest error and overlay it with the reference PES descriptor.
FOX.recipes.psf¶
A set of functions for creating .psf files.
Examples
Example code for generating a .psf file.
Ligand atoms within the ligand .xyz file and the qd .xyz file should be in the exact same order.
For example, implicit hydrogen atoms added by the
from_smiles()
functions are not guaranteed
to be ordered, even when using canonical SMILES strings.
>>> from scm.plams import Molecule, from_smiles
>>> from FOX import PSFContainer
>>> from FOX.recipes import generate_psf
# Accepts .xyz, .pdb, .mol or .mol2 files
>>> qd = Molecule(...)
>>> ligand: Molecule = Molecule(...)
>>> rtf_file : str = ...
>>> psf_file : str = ...
>>> psf: PSFContainer = generate_psf(qd_xyz, ligand_xyz, rtf_file=rtf_file)
>>> psf.write(psf_file)
Examples
If no ligand .xyz is on hand, or its atoms are in the wrong order, it is possible the extract the ligand directly from the quantum dot. This is demonstrated below with oleate (\(C_{18} H_{33} O_{2}^{-}\)).
>>> from scm.plams import Molecule
>>> from FOX import PSFContainer
>>> from FOX.recipes import generate_psf, extract_ligand
>>> qd = Molecule(...) # Accepts an .xyz, .pdb, .mol or .mol2 file
>>> rtf_file : str = ...
>>> ligand_len = 18 + 33 + 2
>>> ligand_atoms = {'C', 'H', 'O'}
>>> ligand: Molecule = extract_ligand(qd, ligand_len, ligand_atoms)
>>> psf: PSFContainer = generate_psf(qd, ligand, rtf_file=rtf_file)
>>> psf.write(...)
Examples
Example for multiple ligands.
>>> from typing import List
>>> from scm.plams import Molecule
>>> from FOX import PSFContainer
>>> from FOX.recipes import generate_psf2
>>> qd = Molecule(...) # Accepts an .xyz, .pdb, .mol or .mol2 file
>>> ligands = ('C[O-]', 'CC[O-]', 'CCC[O-]')
>>> rtf_files = (..., ..., ...)
>>> psf: PSFContainer = generate_psf2(qd, *ligands, rtf_file=rtf_files)
>>> psf.write(...)
If the the psf construction with generate_psf2()
failes to identify a particular ligand,
it is possible to return all (failed) potential ligands with the ret_failed_lig parameter.
>>> ...
>>> ligands = ('CCCCCCCCC[O-]', 'CCCCBr')
>>> failed_mol_list: List[Molecule] = generate_psf2(qd, *ligands, ret_failed_lig=True)
Index¶
|
Generate a |
|
Generate a |
|
Extract a single ligand from qd. |
API¶
- FOX.recipes.generate_psf(qd, ligand=None, rtf_file=None, str_file=None)[source]¶
Generate a
PSFContainer
instance for qd.- Parameters:
qd (
str
orMolecule
) – The ligand-pacifated quantum dot. Should be supplied as either a Molecule or .xyz file.ligand (
str
orMolecule
, optional) – A single ligand. Should be supplied as either a Molecule or .xyz file.rtf_file (
str
, optional) – The path+filename of the ligand’s .rtf file. Used for assigning atom types. Alternativelly, one can supply a .str file with the str_file argument.str_file (
str
, optional) – The path+filename of the ligand’s .str file. Used for assigning atom types. Alternativelly, one can supply a .rtf file with the rtf_file argument.
- Returns:
A PSFContainer instance with the new .psf file.
- Return type:
PSFContainer
- FOX.recipes.generate_psf2(qd, *ligands, rtf_file=None, str_file=None, ret_failed_lig=False)[source]¶
Generate a
PSFContainer
instance for qd with multiple different ligands.Note
Requires the optional RDKit package.
- Parameters:
qd (
str
orMolecule
) – The ligand-pacifated quantum dot. Should be supplied as either a Molecule or .xyz file.*ligands (
str
,Molecule
orChem.Mol
) – One or more PLAMS/RDkit Molecules and/or SMILES strings representing ligands.rtf_file (
str
orIterable
[str
], optional) – The path+filename of the ligand’s .rtf files. Filenames should be supplied in the same order as ligands. Used for assigning atom types. Alternativelly, one can supply a .str file with the str_file argument.str_file (
str
orIterable
[str
], optional) – The path+filename of the ligand’s .str files. Filenames should be supplied in the same order as ligands. Used for assigning atom types. Alternativelly, one can supply a .rtf file with the rtf_file argument.ret_failed_lig (
bool
) – IfTrue
, return a list of all failed (potential) ligands if the function cannot identify any ligands within a certain range. Usefull for debugging. IfFalse
, raise aMoleculeError
.
- Returns:
A single ligand Molecule.
- Return type:
Molecule
- Raises:
MoleculeError – Raised if the function fails to identify any ligands within a certain range. If
ret_failed_lig = True
, return a list of failed (potential) ligands instead and issue a warning.
FOX.recipes.ligands¶
A set of functions for analyzing ligands.
Examples
An example for generating a ligand center of mass RDF.
>>> import numpy as np
>>> import pandas as pd
>>> from FOX import MultiMolecule, example_xyz
>>> from FOX.recipes import get_lig_center
>>> mol = MultiMolecule.from_xyz(example_xyz)
>>> start = 123 # Start of the ligands
>>> step = 4 # Size of the ligands
# Add dummy atoms to the ligand-center of mass and calculate the RDF
>>> lig_centra: np.ndarray = get_lig_center(mol, start, step)
>>> mol_new: MultiMolecule = mol.add_atoms(lig_centra, symbols='Xx')
>>> rdf: pd.DataFrame = mol_new.init_rdf(atom_subset=['Xx'])

Or the ADF.
>>> ...
>>> adf: pd.DataFrame = mol_new.init_rdf(atom_subset=['Xx'], r_max=np.inf)

Or the potential of mean force (i.e. Boltzmann-inverted RDF).
>>> ...
>>> from scipy import constants
>>> from scm.plams import Units
>>> RT: float = 298.15 * constants.Boltzmann
>>> kj_to_kcal: float = Units.conversion_ratio('kj/mol', 'kcal/mol')
>>> with np.errstate(divide='ignore'):
>>> rdf_invert: pd.DataFrame = -RT * np.log(rdf) * kj_to_kcal
>>> rdf_invert[rdf_invert == np.inf] = np.nan # Set all infinities to not-a-number

Focus on a specific ligand subset is possible by slicing the new ligand Cartesian coordinate array.
>>> ...
>>> keep_lig = [0, 1, 2, 3] # Keep these ligands; disgard the rest
>>> lig_centra_subset = lig_centra[:, keep_lig]
# Add dummy atoms to the ligand-center of mass and calculate the RDF
>>> mol_new2: MultiMolecule = mol.add_atoms(lig_centra_subset, symbols='Xx')
>>> rdf: pd.DataFrame = mol_new2.init_rdf(atom_subset=['Xx'])

Examples
An example for generating a ligand center of mass RDF from a quantum dot with multiple unique ligands. A .psf file will herein be used as starting point.
>>> import numpy as np
>>> from FOX import PSFContainer, MultiMolecule, group_by_values
>>> from FOX.recipes import get_multi_lig_center
>>> mol = MultiMolecule.from_xyz(...)
>>> psf = PSFContainer.read(...)
# Gather the indices of each ligand
>>> idx_dict: dict = group_by_values(enumerate(psf.residue_id, start=1))
>>> del idx_dict[1] # Delete the core
# Use the .psf segment names as symbols
>>> symbols = [psf.segment_name[i].iloc[0] for i in idx_dict.values()]
# Add dummy atoms to the ligand-center of mass and calculate the RDF
>>> lig_centra: np.ndarray = get_multi_lig_center(mol, idx_dict.values())
>>> mol_new: MultiMolecule = mol.add_atoms(lig_centra, symbols=symbols)
>>> rdf = mol_new.init_rdf(atom_subset=set(symbols))
Index¶
|
Return an array with the (mass-weighted) mean position of each ligands in mol. |
|
Return an array with the (mass-weighted) mean position of each ligands in mol. |
API¶
- FOX.recipes.get_lig_center(mol, start, step, stop=None, mass_weighted=True)[source]¶
Return an array with the (mass-weighted) mean position of each ligands in mol.
- Parameters:
mol (
FOX.MultiMolecule
) – A MultiMolecule instance.start (
int
) – The atomic index of the first ligand atoms.step (
int
) – The number of atoms per ligand.stop (
int
, optional) – Can be used for neglecting any ligands beyond a user-specified atomic index.mass_weighted (
bool
) – IfTrue
, return the mass-weighted mean ligand position rather than its unweighted counterpart.
- Returns:
A new array with the ligand’s centra of mass. If
mol.shape == (m, n, 3)
then, givenk
new ligands, the to-be returned array’s shape is(m, k, 3)
.- Return type:
- FOX.recipes.get_multi_lig_center(mol, idx_iter, mass_weighted=True)[source]¶
Return an array with the (mass-weighted) mean position of each ligands in mol.
Contrary to
get_lig_center()
, this function can handle molecules with multiple non-unique ligands.- Parameters:
mol (
FOX.MultiMolecule
) – A MultiMolecule instance.idx_iter (
Iterable
[Sequence
[int
]]) – An iterable consisting of integer sequences. Each integer sequence represents a single ligand (by its atomic indices).mass_weighted (
bool
) – IfTrue
, return the mass-weighted mean ligand position rather than its unweighted counterpart.
- Returns:
A new array with the ligand’s centra of mass. If
mol.shape == (m, n, 3)
then, givenk
new ligands (aka the length of idx_iter) , the to-be returned array’s shape is(m, k, 3)
.- Return type:
FOX.recipes.time_resolution¶
A set of functions for calculating time-resolved distribution functions.
Index¶
|
Calculate the time-resolved radial distribution function (RDF). |
|
Calculate the time-resolved angular distribution function (ADF). |
API¶
- FOX.recipes.time_resolved_rdf(mol, start=0, stop=None, step=500, **kwargs)[source]¶
Calculate the time-resolved radial distribution function (RDF).
Examples
>>> from FOX import MultiMolecule, example_xyz >>> from FOX.recipes import time_resolved_rdf # Calculate each RDF over the course of 500 frames >>> time_step = 500 >>> mol = MultiMolecule.from_xyz(example_xyz) >>> rdf_list = time_resolved_rdf( ... mol, step=time_step, atom_subset=['Cd', 'Se'] ... )
- Parameters:
mol (
MultiMolecule
) – The trajectory in question.start (
int
) – The initial frame.stop (
int
, optional) – The final frame. Set toNone
to iterate over all frames.step (
int
) – The number of frames per individual RDF. Note that lower step values will result in increased numerical noise.**kwargs (
Any
) – Further keyword arguments forinit_rdf()
.
- Returns:
A list of dataframes, each containing an RDF calculated over the course of step frames.
- Return type:
See also
init_rdf()
Calculate the radial distribution function.
- FOX.recipes.time_resolved_adf(mol, start=0, stop=None, step=500, **kwargs)[source]¶
Calculate the time-resolved angular distribution function (ADF).
Examples
>>> from FOX import MultiMolecule, example_xyz >>> from FOX.recipes import time_resolved_adf # Calculate each ADF over the course of 500 frames >>> time_step = 500 >>> mol = MultiMolecule.from_xyz(example_xyz) >>> rdf_list = time_resolved_adf( ... mol, step=time_step, atom_subset=['Cd', 'Se'] ... )
- Parameters:
mol (
MultiMolecule
) – The trajectory in question.start (
int
) – The initial frame.stop (
int
, optional) – The final frame. Set toNone
to iterate over all frames.step (
int
) – The number of frames per individual RDF. Note that lower step values will result in increased numerical noise.**kwargs (
Any
) – Further keyword arguments forinit_adf()
.
- Returns:
A list of dataframes, each containing an ADF calculated over the course of step frames.
- Return type:
See also
init_adf()
Calculate the angular distribution function.
FOX.recipes.similarity¶
Recipes for computing the similarity between trajectories.
Examples
An example where, starting from two .xyz files, the similarity is computed between two molecular dynamics (MD) trajectories.
>>> import numpy as np
>>> import FOX
>>> from FOX.recipes import compare_trajectories
# The relevant multi-xyz files
>>> md_filename: str = ...
>>> md = FOX.MultiMolecule.from_xyz(md_filename)
>>> md_ref_filename: str = ...
>>> md_ref = FOX.MultiMolecule.from_xyz(md_ref_filename)
# Calculate the similarity between `md` and `md_ref`
>>> similarity = compare_trajectories(md, md_ref, metric="cosine")
# Identify all sufficiently dissimilar molecules (as defined via `threshold`)
>>> threshold: float = ...
>>> idx = np.zeros(len(md), dtype=np.bool_)
>>> idx[similarity >= threshold] = True
The resulting indices can be used for, for example, identifying all molecules one wants to use for further (quantum-mechanical/classical) calculations.
>>> import qmflows
# Define the job settings
>>> s = qmflows.Settings()
>>> s.lattice = [50, 50, 50]
>>> s.specific.cp2k.motion.print["forces on"].filename = ""
>>> s.overlay(qmflows.templates.singlepoint)
# Construct the job list
>>> mol_list = md[idx].as_Molecule()
>>> job_list = [qmflows.cp2k(s, mol) for mol in mol_list]
# Run the jobs
>>> result_list = [qmflows.run(job) for job in job_list]
# Extract the forces and energies from all jobs
>>> forces = np.array([r.forces for r in result_list])[:, 0]
>>> energy = np.array([r.energy for r in result_list])[:, 0]
Index¶
|
Compute the similarity between 2 trajectories according to the specified metric. |
|
Return the indices that yield a uniform distribution of n points. |
API¶
- FOX.recipes.compare_trajectories(md, md_ref, *, metric='cosine', reduce=<function mean>, reset_origin=True, **kwargs)[source]¶
Compute the similarity between 2 trajectories according to the specified metric.
The default metric aliases
scipy.spatial.distance.cdist()
for defining the (dis-)similarity between the passed md and its reference. This (dis-)similarity array is subsequently reduced to a vector of size \((N_{mol},)\) by taking its mean (along the relevant axes).Examples
>>> import numpy as np >>> from FOX.recipes import compare_trajectories >>> md: np.ndarray = ... >>> md_ref: np.ndarray = ... # Default `metric` presets >>> metric1 = compare_trajectories(md, md_ref, metric="cosine") >>> metric2 = compare_trajectories(md, md_ref, metric="euclidean") >>> metric3 = compare_trajectories(md, md_ref, metric="minkowski", p=1) >>> def rmsd(a: np.ndarray) -> np.float64: ... '''Calculate the root-mean-square deviation.''' ... return np.mean(a**2)**0.5 # Sum over the number of atoms rather than average >>> metric4 = compare_trajectories(md, md_ref, reduce=np.sum) >>> metric5 = compare_trajectories(md, md_ref, reduce=rmsd) >>> def sqeuclidean(md: np.ndarray, md_ref: np.ndarray) -> np.ndarray: ... '''Calculate the distance based on the squared eclidian norm.''' ... delta = md[..., None] - md_ref[..., None, :] ... return np.linalg.norm(delta, axis=-1)**2 # Pass a custom metric-function >>> metric6 = compare_trajectories(md, md_ref, metric=sqeuclidean)
- Parameters:
md (array_like, shape \((N_{mol}, N_{atom1}, 3)\) or \((N_{atom1}, 3)\)) – An array-like object containing the trajectory of interest.
md_ref (array_like, shape \((N_{mol}, N_{atom2}, 3)\) or \((N_{atom2}, 3)\)) – An array-like object containing the reference trajectory.
metric (
str
orCallable[[FOX.MultiMolecule, FOX.MultiMolecule], np.ndarray]
) – The type of metric used for calculating the (dis-)similarity. Accepts either a callback or predefined alias. See metric parameter inscipy.spatial.distance.cdist()
for a comprehensive overview of all aliases. If a callback is provided then it should take a array of shape \((n_{atom1}, 3)\) and \((N_{atom2}, 3)\) as arguments and return a new array of shape \((N_{atom1}, N_{atom2})\).reduce (
Callable[[np.ndarray], np.number]
, optional) – A callable for performing a dimensional reduction. Used for transforming the shape \((N_{atom1}, N_{atom2})\) array, returned by metric, into a scalar. Setting this value toNone
will disable the reduction and return the metric output in unaltered form.reset_origin (
bool
) – Reset the origin by removing translations and rotations from the passed trajectories.**kwargs (
Any
) – Further keyword arguments for metric.
- Returns:
An array with the (dis-)similarity between all molecules in md and md_ref.
- Return type:
np.ndarray[np.float64]
, shape \((N_{mol},)\)
See also
scipy.spatial.distance.cdist()
Compute distance between each pair of the two collections of inputs.
- FOX.recipes.fps_reduce(dist_mat, n=1, **kwargs)[source]¶
Return the indices that yield a uniform distribution of n points.
Examples
>>> from functools import partial >>> import numpy as np >>> from FOX.recipes import compare_trajectories, fps_reduce >>> md: np.ndarray = ... >>> md_ref: np.ndarray = ... >>> reduce_func = partial(fps_reduce, n=10) >>> out = compare_trajectories(md, md_ref, reduce=reduce_func)
Note
This function requires the Compound Attachment Tools package: CAT.
- Parameters:
dist_mat (
np.ndarray[np.float64]
, shape \((m_a, m_b)\)) – A distance matrix.n (
int
, optional) – The number of to-be returned indices.**kwargs (
Any
) – Further keyword arguments forCAT.distribution.uniform_idx()
.
- Returns:
An array of indices.
- Return type:
np.ndarray[np.int64]
, shape \((n,)\)
See also
CAT.distribution.uniform_idx()
Yield the column-indices that result in a uniform or clustered distribution.
FOX.recipes.compare_trajectories()
Compute the similarity between 2 trajectories according to the specified metric.
FOX.recipes.top¶
Recipe for creating GROMACS .top files from an .xyz and CHARMM .rtf and .str files.
Index¶
|
Construct a |
API¶
- FOX.recipes.create_top(*, mol_count, rtf_files, prm_files, generate_14_nb_pairs=True, generate_nb_pairs=True)[source]¶
Construct a
FOX.TOPContainer
object from the passed CHARMM .rtf and .prm files.Examples
>>> from FOX.recipes import create_top >>> output_path: str = ... >>> rtf_files = ["ligand1.rtf", "ligand2.rtf"] >>> prm_files = ["ligand1.prm", "ligand2.prm"] >>> mol_count = [30, 15] # 30 ligand1 residues and 15 ligand2 residues >>> top = create_top( ... mol_count=mol_count, rtf_files=rtf_files, prm_files=prm_files, ... ) >>> top.to_file(output_path)
- Parameters:
mol_count (
list[int]
) – The number of molecules of a given residue. Note that rtf files may contain multiple residues.rtf_files (list of path-like objects) – The names of all to-be converted .rtf files
prm_files (list of path-like and/or
FOX.PRMContainer
objects) – The names of all to-be converted .prm filesgenerate_14_nb_pairs (bool) – Whether to automatically generate all 1,4 non-bonded pairs
generate_nb_pairs (bool) – Whether to automatically generate non-bonded pairs for all (indirectly) unconnected atoms.
- Returns:
A new .top container object
- Return type:
FOX.TOPContainer
FOX.recipes.xyz_to_gro¶
Interconvert between .xyz and .gro files.
Examples
This recipe is available from the command line via the FOX.recipes.xyz_to_gro
entry point:
> FOX.recipes.xyz_to_gro file.xyz file.gro
Index¶
|
Convert the passed .xyz file into a .gro file. |
|
Convert the passed .xyz file into a .gro file. |
API¶
cp2k_to_prm¶
A TypedMapping
subclass converting CP2K settings to .prm-compatible values.
Index¶
A |
|
API¶
- class FOX.io.cp2k_to_prm.PRMMapping[source]¶
A
TypedMapping
providing tools for converting CP2K settings to .prm-compatible values.- key¶
The key(s) within
PRMMapping.key_path
containg the actual properties of interest, e.g."epsilon"
and"sigma"
.
- post_process¶
Callables for post-processing the value of interest. Set a particular callable to
None
to disable post-processing.- Type:
tuple
[Callable[[float], float]
, optional]
- FOX.io.cp2k_to_prm.CP2K_TO_PRM : MappingProxyType[str, PRMMapping]¶
A
Mapping
containingPRMMapping
instances.
Index¶
|
A |
|
A |
API¶
- class FOX.armc.ParamMappingABC(data, move_range, func, constraints=None, is_independent=False, **kwargs)[source]¶
A
Mapping
for storing and updating forcefield parameters.Besides the implementation of the
Mapping
protocol, this class has access to four main methods:__call__()
ormove()
move a random parameter by a random step size.identify_move()
identify the parameter and move step size.clip_move()
clip the move.apply_constraints()
apply further constraints to the move.
Note that
__call__()
will internally call all other three methods.Examples
>>> import pandas as pd >>> df = pd.DataFrame(..., index=pd.MultiIndex(...)) >>> param = ParamMapping(df, ...) >>> idx = param.move()
- move_range¶
An 1D array with all allowed move steps.
- Type:
np.ndarray[np.float64]
, shape \((n,)\)
- func¶
The callable used for applying \(\phi\) to the auxiliary error. The callable should take an two floats as arguments and return a new float.
- Type:
- _net_charge¶
The net charge of the molecular system. Only applicable if the
"charge"
is among the passed parameters.- Type:
float
, optional
- FILL_VALUE = mappingproxy({'min': -inf, 'max': inf, 'count': -1, 'frozen': False, 'guess': False, 'unit': ''})¶
Fill values for when optional keys are absent.
- add_param(idx, value, **kwargs)[source]¶
Add a new parameter to this instance.
- Parameters:
idx (
tuple[str, str, str]
) – The index of the new parameter. Must be compatible withpd.DataFrame.loc
.value (
float
) – The value of the new parameter.**kwargs (
Any
) – Values forParamMappingABC.metadata
.
- abstract identify_move(param_idx)[source]¶
Identify the to-be moved parameter and the size of the move.
- Parameters:
param_idx (
str
) – The name of the parameter-containg column.- Returns:
The index of the to-be moved parameter, it’s value and the size of the move.
- Return type:
- clip_move(idx, value, param_idx)[source]¶
An optional function for clipping the value of value.
- Parameters:
idx (
tuple[str, str, str]
) – The index of the moved parameter.value (
float
) – The value of the moved parameter.param_idx (
str
) – The name of the parameter-containg column.
- Returns:
The newly clipped value of the moved parameter.
- Return type:
- apply_constraints(idx, value, param)[source]¶
An optional function for applying further constraints based on idx and value.
Should perform an inplace update of this instance.
- Parameters:
idx (
tuple[str, str, str]
) – The index of the moved parameter.value (
float
) – The value of the moved parameter.param (
str
) – The name of the parameter-containg column.
- Returns:
Any exceptions raised during this functions’ call.
- Return type:
Exception
, optional
- constraints_to_str()[source]¶
Convert the constraints into a human-readably
pandas.Series
.
- class FOX.armc.ParamMapping(data, move_range=array([[0.9, 0.905, 0.91, 0.915, 0.92, 0.925, 0.93, 0.935, 0.94, 0.945, 0.95, 0.955, 0.96, 0.965, 0.97, 0.975, 0.98, 0.985, 0.99, 0.995, 1.005, 1.01, 1.015, 1.02, 1.025, 1.03, 1.035, 1.04, 1.045, 1.05, 1.055, 1.06, 1.065, 1.07, 1.075, 1.08, 1.085, 1.09, 1.095, 1.1 ]]), func=<ufunc 'multiply'>, **kwargs)[source]¶
A
Mapping
for storing and updating forcefield parameters.Besides the implementation of the
Mapping
protocol, this class has access to four main methods:__call__()
ormove()
move a random parameter by a random step size.identify_move()
identify the parameter and move step size.clip_move()
clip the move.apply_constraints()
apply further constraints to the move.
Note that
__call__()
will internally call all other three methods.Examples
>>> import pandas as pd >>> df = pd.DataFrame(..., index=pd.MultiIndex(...)) >>> param = ParamMapping(df, ...) >>> idx = param.move()
- move_range¶
An 1D array with all allowed move steps.
- Type:
np.ndarray[np.float64]
, shape \((n,)\)
- func¶
The callable used for applying \(\phi\) to the auxiliary error. The callable should take an two floats as arguments and return a new float.
- Type:
- _net_charge¶
The net charge of the molecular system. Only applicable if the
"charge"
is among the passed parameters.- Type:
float
, optional
- CHARGE_LIKE = frozenset({'charge'})¶
A set of charge-like parameters which require a parameter re-normalization after every move.
- identify_move(param_idx)[source]¶
Identify and return a random parameter and move size.
- Parameters:
param_idx (
int
) – The name of the parameter-containg column.- Returns:
The index of the to-be moved parameter, it’s value and the size of the move.
- Return type:
- clip_move(idx, value, param_idx)[source]¶
Ensure that value falls within a user-specified range.
- Parameters:
idx (
tuple[str, str, str]
) – The index of the moved parameter.value (
float
) – The value of the moved parameter.param_idx (
int
) – The name of the parameter-containg column.
- Returns:
The newly clipped value of the moved parameter.
- Return type:
- apply_constraints(idx, value, param_idx)[source]¶
Apply further constraints based on idx and value.
Performs an inplace update of this instance.
- Parameters:
idx (
tuple[str, str, str]
) – The index of the moved parameter.value (
float
) – The value of the moved parameter.param_idx (
int
) – The name of the parameter-containg column.
Index¶
|
A class for managing qmflows-style jobs. |
|
A class for managing qmflows-style jobs. |
API¶
- class FOX.armc.PackageManagerABC(data, hook=None, **kwargs)[source]¶
A class for managing qmflows-style jobs.
- property data¶
A property containing this instance’s underlying
dict
.The getter will simply return the attribute’s value. The setter will validate and assign any mapping or iterable containing of key/value pairs.
Index¶
|
The base |
|
The Addaptive Rate Monte Carlo class ( |
|
An |
API¶
- class FOX.armc.MonteCarloABC(molecule, package_manager, param, keep_files=False, hdf5_file='armc.hdf5', logger=None, pes_post_process=None, **kwargs)[source]¶
The base
MonteCarloABC
class.- property molecule¶
Get value or set value as a tuple of MultiMolecule instances.
- property pes_post_process¶
Get or set post-processing functions.
- property logger¶
Get or set the logger.
- get(key, default=None)[source]¶
Return the value for key if it’s available; return default otherwise.
- add_pes_evaluator(name, func, err_func, args=(), kwargs=mappingproxy({}), validation=False, ref=None, weight=0.0)[source]¶
Add a callable to this instance for constructing PES-descriptors.
Examples
>>> from FOX import MonteCarlo, MultiMolecule >>> mc = MonteCarlo(...) >>> mol = MultiMolecule.from_xyz(...) # Prepare arguments >>> name = 'rdf' >>> func = FOX.MultiMolecule.init_rdf >>> atom_subset = ['Cd', 'Se', 'O'] # Keyword argument for func # Add the PES-descriptor constructor >>> mc.add_pes_evaluator(name, func, kwargs={'atom_subset': atom_subset})
- Parameters:
name (
str
) – The name under which the PES-descriptor will be stored (e.g."RDF"
).func (
Callable
) – The callable for constructing the PES-descriptor. The callable should take an array-like object as input and return a new array-like object as output.err_func (
Callable
) – The function for computing the auxilary error.args (
Sequence
) – A sequence of positional arguments.kwargs (
dict
orIterable[dict]
) – A dictionary or an iterable of dictionaries with keyword arguments. Providing an iterable allows one to use a unique set of keyword arguments for each molecule inMonteCarlo.molecule
.validation (
bool
) – Whether the PES-descriptor is used exclusively for validation or not.
- property clear_jobs¶
Delete all cp2k output files.
- run_jobs()[source]¶
Run a geometry optimization followed by a molecular dynamics (MD) job.
Returns a new
MultiMolecule
instance constructed from the MD trajectory and the path to the MD results. If no trajectory is available (i.e. the job crashed) return None instead.The MD job is constructed according to the provided settings in self.job.
- Returns:
A list of MultiMolecule instance(s) constructed from the MD trajectory. Will return
None
if one of the jobs crashed- Return type:
list[FOX.MultiMolecule]
, optional
- move(idx=None)[source]¶
Update a random parameter in self.param by a random value from self.move.range.
Performs in inplace update of the
'param'
column in self.param. By default the move is applied in a multiplicative manner. self.job.md_settings and self.job.preopt_settings are updated to reflect the change in parameters.Examples
>>> print(armc.param['param']) charge Br -0.731687 Cs 0.731687 epsilon Br Br 1.045000 Cs Br 0.437800 Cs Cs 0.300000 sigma Br Br 0.421190 Cs Br 0.369909 Cs Cs 0.592590 Name: param, dtype: float64 >>> for _ in range(1000): # Perform 1000 random moves >>> armc.move() >>> print(armc.param['param']) charge Br -0.597709 Cs 0.444592 epsilon Br Br 0.653053 Cs Br 1.088848 Cs Cs 1.025769 sigma Br Br 0.339293 Cs Br 0.136361 Cs Cs 0.101097 Name: param, dtype: float64
- Parameters:
idx (
int
, optional) – The column key forparam_mapping["param"]
.- Returns:
A tuple with the (new) values in the
'param'
column of self.param.- Return type:
- get_pes_descriptors(get_first_key=False)[source]¶
Check if a key is already present in history_dict.
If
True
, return the matching list of PES descriptors; IfFalse
, construct and return a new list of PES descriptors.The PES descriptors are constructed by the provided settings in self.pes.
- Parameters:
get_first_key (
bool
) – Keep both the files and the job_cache if this is the first ARMC iteration. Usefull for manual inspection in case cp2k hard-crashes at this point.- Returns:
A previous value from history_dict or a new value from an MD calculation & a
MultiMolecule
instance constructed from the MD simulation. Values are set tonp.inf
if the MD job crashed.- Return type:
dict[str, np.ndarray[np.float64]]
,dict[str, np.ndarray[np.float64]]
andlist[FOX.MultiMolecule]
- class FOX.armc.ARMC(phi, iter_len=50000, sub_iter_len=100, **kwargs)[source]¶
The Addaptive Rate Monte Carlo class (
ARMC
).A subclass of
MonteCarloABC
.- phi¶
A PhiUpdater instance.
- Type:
- \**kwargs
Keyword arguments for the
MonteCarlo
superclass.- Type:
- to_yaml_dict(*, path='.', folder='MM_MD_workdir', logfile='armc.log', psf=None)[source]¶
Convert an
ARMC
instance into a .yaml readable byARMC.from_yaml
.- Returns:
A dictionary.
- Return type:
dict[str, Any]
- do_inner(kappa, omega, acceptance, key_old)[source]¶
Run the inner loop of the
ARMC.__call__()
method.- Parameters:
kappa (
int
) – The super-iteration, \(\kappa\), inARMC.__call__()
.omega (
int
) – The sub-iteration, \(\omega\), inARMC.__call__()
.acceptance (
np.ndarray[np.bool_]
) – An array with the acceptance over the course of the latest super-iterationkey_new (
tuple[float, ...]
) – A tuple with the latest set of forcefield parameters.
- Returns:
The latest set of parameters.
- Return type:
tuple[float, ...]
- to_hdf5(mol_list, accept, aux_new, aux_validation, pes_new, pes_validation, kappa, omega)[source]¶
Construct a dictionary with the hdf5_kwarg and pass it to
to_hdf5()
.- Parameters:
mol_list (
list[FOX.MultiMolecule]
, optional) – An iterable consisting molecules instances (orNone
).accept (
bool
) – Whether or not the latest set of parameters was accepted.aux_new (
np.ndarray[np.float64]
) – The latest auxiliary error.aux_validation (
np.ndarray[np.float64]
) – The latest auxiliary error from the validation.pes_new (
dict[str, np.ndarray[np.float64]]
) – A dictionary of PES descriptors.pes_validation (
dict[str, np.ndarray[np.float64]]
) – A dictionary of PES descriptors from the validation.kappa (
int
) – The super-iteration, \(\kappa\), inARMC.__call__()
.omega (
int
) – The sub-iteration, \(\omega\), inARMC.__call__()
.
- Returns:
A dictionary with the hdf5_kwarg argument for
to_hdf5()
.- Return type:
- get_aux_error(pes_dict, validation=False)[source]¶
Return the auxiliary error \(\Delta \varepsilon_{QM-MM}\).
The auxiliary error is constructed using the PES descriptors in values with respect to self.ref.
The default function is equivalent to:
\[\Delta \varepsilon_{QM-MM} = \frac{ \sum_{i}^{N} |r_{i}^{QM} - r_{i}^{MM}|^2 } {r_{i}^{QM}}\]- Parameters:
pes_dict (
dict[str, np.ndarray[np.float64]]
) – An dictionary with \(m*n\) PES descriptors each.- Returns:
An array with \(m*n\) auxilary errors
- Return type:
np.ndarray[np.float64]
, shape \((m, n)\)
- class FOX.armc.ARMCPT(swapper=<function swap_random>, **kwargs)[source]¶
An
ARMC
subclass implementing a parallel tempering procedure.- do_inner(kappa, omega, acceptance, key_old)[source]¶
Run the inner loop of the
ARMC.__call__()
method.- Parameters:
kappa (
int
) – The super-iteration, \(\kappa\), inARMC.__call__()
.omega (
int
) – The sub-iteration, \(\omega\), inARMC.__call__()
.acceptance (
np.ndarray[np.bool_]
) – An array with the acceptance over the course of the latest super-iterationkey_new (
tuple[float, ...]
) – A tuple with the latest set of forcefield parameters.
- Returns:
The latest set of parameters.
- Return type:
tuple[float, ...]
Index¶
|
A class for applying and updating \(\phi\). |
|
A class for applying and updating \(\phi\). |
API¶
- class FOX.armc.PhiUpdaterABC(phi, gamma, a_target, func, **kwargs)[source]¶
A class for applying and updating \(\phi\).
Has two main methods:
Examples
>>> import numpy as np >>> value = np.ndarray(...) >>> phi = PhiUpdater(...) >>> phi(value) >>> phi.update(...)
- phi¶
The variable \(\phi\).
- Type:
- gamma¶
The constant \(\gamma\).
- Type:
- a_target¶
The target acceptance rate \(\alpha_{t}\).
- Type:
- func¶
The callable used for applying \(\phi\) to the auxiliary error. The callable should take an array-like object and a
numpy.ndarray
as arguments and return a new array.
- property shape¶
-
Serves as a wrapper around the
shape
attribute ofphi
. Note thatphi
,gamma
anda_target
all have the same shape.
- abstract update(acceptance, **kwargs)[source]¶
An abstract method for updating
phi
based on the values ofgamma
and acceptance.- Parameters:
acceptance (ArrayLike[np.bool_]) – An array-like object consisting of booleans.
**kwargs (
Any
) – Further keyword arguments which can be customized in the methods of subclasses.
- class FOX.armc.PhiUpdater(phi=1.0, gamma=2.0, a_target=0.25, func=<ufunc 'add'>, **kwargs)[source]¶
A class for applying and updating \(\phi\).
Has two main methods:
Examples
>>> import numpy as np >>> value = np.ndarray(...) >>> phi = PhiUpdater(...) >>> phi(value) >>> phi.update(...)
- phi¶
The variable \(\phi\).
- Type:
- gamma¶
The constant \(\gamma\).
- Type:
- a_target¶
The target acceptance rate \(\alpha_{t}\).
- Type:
- func¶
The callable used for applying \(\phi\) to the auxiliary error. The callable should take an array-like object and a
numpy.ndarray
as arguments and return a new array.
- update(acceptance, *, logger=None)[source]¶
Update the variable \(\phi\).
\(\phi\) is updated based on the target accepatance rate, \(\alpha_{t}\), and the acceptance rate, acceptance, of the current super-iteration:
\[\phi_{\kappa \omega} = \phi_{ ( \kappa - 1 ) \omega} * \gamma^{ \text{sgn} ( \alpha_{t} - \overline{\alpha}_{ ( \kappa - 1 ) }) }\]- Parameters:
acceptance (ArrayLike[np.bool_]) – An array-like object consisting of booleans.
logger (
logging.Logger
, optional) – A logger for reporting the updated value.
err_funcs¶
A module with ARMC error functions.
Index¶
|
Return a normalized mean square error (MSE) over the flattened input. |
|
Return a normalized mean square error (MSE) over the flattened subarrays of the input. |
|
Return the maximum normalized mean square error (MSE) over the flattened subarrays of the input. |
|
Return a normalized mean square error (MSE) over the flattened input. |
|
Return a normalized mean square error (MSE) over the flattened subarrays of the input. |
|
Return a normalized mean square error (MSE) over the flattened input. |
API¶
- FOX.armc.mse_normalized(qm, mm)[source]¶
Return a normalized mean square error (MSE) over the flattened input.
- FOX.armc.mse_normalized_weighted(qm, mm)[source]¶
Return a normalized mean square error (MSE) over the flattened subarrays of the input.
>1D array-likes are herein treated as stacks of flattened arrays.
- FOX.armc.mse_normalized_max(qm, mm)[source]¶
Return the maximum normalized mean square error (MSE) over the flattened subarrays of the input.
>1D array-likes are herein treated as stacks of flattened arrays.
- FOX.armc.mse_normalized_v2(qm, mm)[source]¶
Return a normalized mean square error (MSE) over the flattened input.
Normalize before squaring the error.
- FOX.armc.mse_normalized_weighted_v2(qm, mm)[source]¶
Return a normalized mean square error (MSE) over the flattened subarrays of the input.
>1D array-likes are herein treated as stacks of flattened arrays.
Normalize before squaring the error.
- FOX.armc.err_normalized(qm, mm)[source]¶
Return a normalized wrror over the flattened input.
Normalize before taking the exponent - 1 of the error.
- FOX.armc.err_normalized_weighted(qm, mm)[source]¶
Return a normalized error over the flattened subarrays of the input.
>1D array-likes are herein treated as stacks of flattened arrays.
- FOX.armc.default_error_func = FOX.armc.mse_normalized¶
An alias for
FOX.arc.mse_normalized()
.